
Analog Integrated Circuits and Signal Processing, 28, 279–291, 2001
©C 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Current-Mode Hysteretic Winner-take-all Network,
with Excitatory and Inhibitory Coupling

GIACOMO INDIVERI
Institute of Neuroinformatics, University/ETH Zürich
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Abstract. Winner-take-all (WTA) circuits are commonly used in a wide variety of applications. One of the most
used current-mode WTA designs is the one originally proposed by Lazzaro et al. [1]. Several extensions to this
design have been suggested in the past. In this paper we present a variant of this current-mode WTA circuit,
containing all of the enhancements previously proposed, together with new additional modifications that endow
it with interesting hysteretic and lateral inhibition and excitation properties. We compare the performance of this
WTA circuit to the original WTA design, providing experimental data obtained from a VLSI chip containing both
types of circuits, designed using closely matched layouts. We derive analytically the response properties of the
circuit’s lateral diffusion network, pointing out the differences to previously proposed diffusion networks, and
present experimental data confirming the theoretical predictions. We also describe application domains that can best
exploit these types of hysteretic WTA circuits.
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1. Introduction

CMOS implementations of winner-take-all (WTA) net-
works are an important class of circuits widely used in
neural networks and pattern-recognition systems. They
implement architectures that select one node, out of
many, through a competition mechanism that depends
on the amplitude of the architecture’s input signals.
Several types of WTA circuits have been proposed in
the literature [1–10]. Each WTA circuit was designed
with specific optimization constraints in mind. For ex-
ample, the circuits proposed in [2] and in [8] are optimal
for high-speed, high-precision applications, whereas
the circuits of [6] and [7] are optimal for pulse-coded
neural networks. The WTA circuit proposed by
Lazzaro et al. [1] optimizes power consumption and
silicon area usage. It is ideal for applications that do not
require high precision or high speed computation, such
as sensory perception tasks [11–13]. This circuit, pro-
posed more than ten years ago, still remains one of the
most compact and elegant designs of analog current-
mode WTA circuits. It is asynchronous; it responds in
real-time; and it processes all its input currents in par-
allel, using only two transistors per node, if the output

signal is a voltage, and four transistors if the output
signal is a current (see Fig. 1(b)). Recently, some ex-
tensions to the basic design described in [1] have been
proposed [14–16]. They endow the WTA circuit with
local excitatory feedback [14] and with distributed hys-
teresis [15,16]. Local excitatory feedback enhances res-
olution and speed performance of the circuit, providing
a hysteretic mechanism that withstands the selection of
other potential winners unless they are stronger than
the selected one by a set hysteretic current. Distributed
hysteresis allows the winning input to shift between ad-
jacent locations maintaining its winning status, without
having to reset the network. These enhanced types of
WTA networks are able to select and lock onto the in-
put with strongest amplitude, and to track it as it shifts
smoothly from one pixel to its neighbor [17–19].

In this paper we propose a new version of the
current-mode WTA circuit that contains local excita-
tory feedback and lateral excitatory coupling (to imple-
ment distributed hysteresis) but that also implements
lateral inhibitory coupling and diode-source degenera-
tion. The interactions between the non-linearities of the
WTA network and the lateral coupling networks pro-
duce center-surround spatial response properties that
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Fig. 1. (a) Hysteretic WTA cell, with local excitatory feedback,
lateral excitatory coupling, lateral inhibitory coupling and diode-
source degeneration. (b) Basic current-mode WTA cell.

differ from the ones obtained using conventional spa-
tial diffusion networks [20,21]. To make an accurate
comparison between the performance of the new WTA
network and the performance of the classical WTA net-
work described in [1], we implemented both circuits on
the same chip, using transistors of the same size, com-
mon bias pads and the same input sources. In the next
two sections we describe the circuits, present exper-
imental data from both networks, derive analytically
the hysteretic WTA network’s lateral coupling proper-
ties as a function of the circuit parameters, point out
the differences to conventional diffusor networks and
show the response properties of the circuit when both
lateral excitatory and lateral inhibitory couplings are
enabled. Finally in Section 4 we suggest possible ap-
plication domains for the type of network proposed,
and in Section 5 we make some concluding remarks.

2. The WTA Circuit

The circuit diagram of one cell of the hysteretic WTA
network proposed in this paper is shown in Fig. 1(a).
Fig. 1(b) shows the original current-mode WTA net-
work, as originally proposed in [1], for comparison.
We implemented both circuits on the same chip, using
a 2 µm CMOS technology, as linear arrays of 25 cells.
The cell size of the hysteretic WTA network is 60 µm ×
100 µm. To minimize device mismatch effects, the lay-
out of the classical WTA circuit was designed to be as
similar as possible to the layout of the hysteretic WTA
circuit. For this reason the cell of the classical WTA
network, though less dense, also measures 60 µm ×
100 µm.

The current source shown in Fig. 1 that generates
the bias current Ib can be implemented using a sin-
gle n-type MOS transistor. If the transistor operates
in weak-inversion (or subthreshold), the amplitude of
the bias current Ib depends exponentially on its gate
voltage Vb [22]. In this regime the transistor is in sat-
uration as long as Vc ≥ 4UT (i.e., Vc ≥ 100 mV), its

output current being: Ib = I0e
κVb
UT . The term UT repre-

sents the thermal voltage, I0 the zero bias current, and
κ the subthreshold slope coefficient [22]. In practical
applications Ib can be set by providing an external bias
current into a single diode-connected transistor that has
its gate connected to all the network’s bias transistors
(thus implementing a series of current-mirrors). Simi-
larly, the input current source that generates Iin can be
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implemented using a p-type transistor operating in the
subthreshold regime. Although the WTA circuit can op-
erate both in the weak and strong inversion regimes, it is
typically operated in the weak inversion/subthreshold
regime. In this regime the circuit is particularly sensi-
tive to device mismatch and noise. In the existent im-
plementation, when operated in subthreshold the circuit
selects one single winner if its input currents differ by
at least 10%. The low currents provided by the sub-
threshold input transistors and by the bias transistor
(typically ranging from fractions of pico-Amperes to
hundreds of nano-Amperes) also limit the circuit’s dy-
namic response properties. As with the original WTA
circuit, the network’s time constant is dominated by the
maximum input current and ranges from fractions of
milliseconds up to fractions of seconds. The detailed,
quantitative analysis of the WTA’s dynamic response
properties discussed in [1] is valid also for the circuit
proposed in this paper. As the original WTA circuit,
this circuit is ideal for tasks that do not rely on high
precision and do not require time constants lower than
a few milliseconds. Fortunatelly, most applications in-
volving perception and processing of sensory signals
fall into this category. Examples of applications of this
kind are provided in Section 4.

The main differences between the original WTA de-
sign and the one described here are implemented by
transistors M5 through M9, as shown in Fig. 1. Specif-
ically, transistor M5, together with M3 of Fig. 1(a)
implement local excitatory feedback. Transistor M6
implements diode-source degeneration, and transistors
M8 and M9 implement inhibitory and excitatory lateral
coupling.

2.1. Local Excitatory Feedback

The main effect of local excitatory feedback is to intro-
duce a hysteretic behavior into the WTA network. Once
a cell is selected as the winner, a current proportional
to the network’s bias current Ib is sourced back into the
cell’s input node through the current-mirror formed by
M3 and M5 (see Fig. 1(a)). If the bias current Ib is a sub-
threshold current, the proportionality factor of the local
excitatory feedback current is modulated exponentially
by the voltage difference (Vdd − Vgain). Hysteresis is
evident because, after a cell has been selected as the
winner, to lose its winning status the cell’s input current
has to decrease by an additional amount equal to the lo-
cal excitatory feedback current. Fig. 2 shows the output

of a cell of the hysteretic WTA network, superimposed
on the output of the corresponding cell belonging to the
classical WTA network, in response to the same input
signals. For both types of WTA networks, input cur-
rents were applied only to two neighboring cells, while
all other cells received no input. The common mode
input current of the stimulated cells was set by bias-
ing the input p-type transistors with a constant voltage
Vin = 4.2 V. The bias current of both WTA networks
was generated using a bias voltage Vb = 0.67 V. The
local excitatory feedback loop of the hysteretic WTA
circuit was fully activated (Vgain = Vdd ). The width of
the hysteresis curve can be modulated by changing ei-
ther the WTA network’s bias current Ib, or the control
voltage Vgain .

The stability properties of the hysteretic WTA net-
work are the same as those of conventional winner-
take-all circuits with positive feedback, and have been
analyzed in detail in [14]. Similarly, the dynamic re-
sponse properties of the hysteretic WTA network are
the same as those of the classical current-mode WTA
network described in [1] and depend mainly on the
values of Ib and of the total current entering the input
nodes of the WTA cells.

2.2. Diode-source Degeneration

Source degeneration, also referred to as emitter degen-
eration for bipolar transistors, is a classical technique in
analog design [23]. It consists of converting the current
flowing through a transistor into a voltage, by dropping
it across a resistor or a diode, and feeding this voltage
back to the source of the transistor, to increase its gate
voltage accordingly. At the WTA network level, source
degeneration of the input transistor has the effect of in-
creasing the circuit’s winner selectivity gain. This is
evident in Fig. 3, where the output of the diode-source
degenerated network is superimposed on the output of
the classical WTA network, in response to the same
input signals. This figure shows the output of four cells
(two neighboring cells per type of WTA network) as
they change their state from winning to losing and vice-
versa. Small differences in the amplitude of the winning
signals are due to mismatches of the readout transis-
tors (M4 of Fig. 1(a)). The data was taken using the
same input stimulus arrangement described for Fig. 2.
The bias current of both WTA networks was gener-
ated using a bias voltage Vb = 0.7 V. Local excitatory
feedback (and the hysteretic behavior associated with
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Fig. 2. Response of the hysteretic WTA circuit (outer hysteresis plot) superimposed to the response of the classical WTA circuit (inner central
plot). The output of the classical WTA circuit was shifted vertically by a few nano-amperes for sake of clarity.

it) was disabled by setting the control voltage Vgain

to 3 V.
By adding just one transistor and connecting its

gate to the diode-source degeneration transistor of each
WTA cell (see M7 of Fig. 1) it is possible to read out
a copy of the cell’s net input current Iall . As Iall rep-
resents the sum of all of the currents converging into
the WTA cell (namely, the input current Iin , the current
being spread to or from the left and right nearest neigh-
bors and the local excitatory feedback current coming
from the top p-type current mirror), it is a useful mea-
sure for visualizing the state of the WTA network.

3. Lateral Coupling

Lateral coupling is implemented in the hysteretic WTA
network proposed here by means of “diffusor” (or
“pseudo-conductance”) networks [20,21]. Diffusor

networks are extensively used in silicon retinas and
other types of neuromorphic circuits. In the circuit pro-
posed in this article the current diffusors are imple-
mented by transistors M8 and M9 of Fig. 1(a), oper-
ated in the subthreshold regime. Specifically, transistor
M9 implements lateral excitatory coupling and tran-
sistor M8 lateral inhibitory coupling. Functionally, the
inhibitory diffusor network can be used to spatially
decouple the WTA cells, while the excitatory diffusor
network can be used to smooth the input signals, com-
bined with the local excitatory feedback current of the
winning cell (see Section 2.1).

3.1. Lateral Excitation

To study analytically the principle of operation of
the excitatory diffusor network let us neglect, for the
time being, the inhibitory diffusor network (i.e., let
us set the inhibition to be global with Vinh = 5 V).
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Fig. 3. Diode-source degenerated WTA network output and classical WTA network output.

Furthermore let us neglect, for the sake of simplicity,
transistors M5, M6, and M7 of Fig. 1(a) and apply a
constant subthreshold input current Iin only to the first
node of the network. In this case the hysteretic WTA
network reduces to the circuit shown in Fig. 4.

As pointed out by the figure, the (subthreshold) cur-
rents flowing through the diffusors can be separated
into forward and reverse components: Id,i = I f,i − Ir,i ,
where

Ir,i = I0eκ
Vex
UT

− Vi
UT (1)

I f,i = I0eκ
Vex
UT

− Vi+1
UT (2)

From these equations the following relationship holds:

I f,i = Ir,i+1 (3)

By writing Kirchhoff’s current law at each node i we
have:

Ia,i = (I f,i−1 − Ir,i−1) − (I f,i − Ir,i ) (4)

which, using equation (3), turns into:

Ia,i = 2Ir,i − Ir,i−1 − Ir,i+1 (5)

but, if Ia,i is a subthreshold current, we can also write:

Ia,i = I0eκ
Vc
UT

(
1 − e− Vi

UT

)
(6)

and, by expressing Vi in terms of Ir,i (using equa-
tion (1))

Ia,i = I0eκ
Vc
UT − eκ

(
Vc
UT

− Vex
UT

)
Ir,i (7)

which yields

Ir,i = λI0eκ
Vc
UT − λIa,i (8)

where λ = e−κ
(

Vc
UT

− Vex
UT

)
.

Substituting equation (8) into equation (5) we obtain
the discrete approximation of a Laplacian:

Ia,i = λ(Ia,i−1 − 2Ia,i + Ia,i+1) (9)
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It follows that

Ia,i = λ

1 + 2λ
Ia,i−1 + λ

1 + 2λ
Ia,i+1 (10)

By using this equation recursively we can write

Ia,i = λ

1 + 2λ
Ia,i−1 + λ2

(1 + 2λ)2
(Ia,i + Ia,i+2) (11)

If λ � 1, equation (11) reduces to

Ia,i ≈ λIa,i−1 (12)

If we want to estimate the current flowing to ground
through the nth transistor of the network Ia,n , we can
use equation (12) recursively until we reach the first
cell of the network (node 0):

Ia,n = Ia,0λ
n (13)

but, as Ia,0 ≈ Iin (if λ � 1), we can write:

Ia,n = Iine−nκ
(

Vc
UT

− Vex
UT

)
. (14)

The term λ is defined as the network’s space con-
stant. The space constant (and with it, the network’s
spatial coupling) is modulated exponentially by the
term −(Vc − Vex ). While Vex is a directly accessible
circuit parameter, independent of other circuit param-
eters, the voltage Vc depends logarithmically on the
input current. Specifically, for the circuit of Fig. 4:

Ia,0 = I0ek Vc
UT ≈ Iin (15)

With this relationship in mind, we can rewrite λ as a
function of Vex and Iin , and equation (13) reduces to:

Ia,n = Iin

(
I0eκ

Vex
UT

Iin

)n

(16)

According to this finding, an increase in Vex will
increase (exponentially) the amount of spreading and
allow more current to flow through the diffusors. Con-
versely, increases in the amplitude of Iin will narrow
the spreading width of the network and diminish the
amount of current flowing through the diffusors. In this
respect this excitatory diffusor network differs from the
diffusor networks previously proposed [20] which have
the undesirable property of increasing lateral spread-
ing with increasing amplitude of input signals. In typ-
ical applications of diffusor networks, increasing the
range over which spatial averaging takes place can be

an effective strategy if the signal-to-noise ratio of the
input signals is not too high. On the other hand, if input
signals are strong, smoothing over large regions not
only might not be useful, but could even be counter-
productive. The experimental data of Fig. 5 confirms
the theoretical predictions of equation (16). In Fig. 5(a)
we stimulated the first cell of the hysteretic WTA net-
work with a constant current and measured its response
for different values of Vex . As for the theoretical anal-
ysis, lateral inhibition is set to be global (Vinh = 5 V);
the effects of the diode-source degeneration transis-
tors can be neglected, as the currents flowing through
the diode-connected transistors (M6 of Fig. 1(a)) are
of the order of a few nano-amperes. The discontinuity
present in the response profile between the first cell
of the network and the second is due to the non-linear
nature of the WTA competitive mechanism. From the
second cell on, the measured current decays exponen-
tially with distance, as predicted by equation (16), (see
inset of Fig. 5(a)). In Fig. 5(b) we stimulated the first
cell of the network with currents of increasing ampli-
tude (for a fixed value of Vex ), measured the network’s
response and plotted the data on a normalized scale. As
predicted by equation (16), and as shown in Fig. 5(b),
lateral spreading decreases with increasing amplitude
of the input current.

3.2. Local Inhibition

The local inhibitory diffusor network is equivalent in
all respects to the local excitatory network. It can be
shown, using the same methodology used to analyze the
excitatory diffusor network, that the inhibitory diffusor
network’s space constant depends exponentially on Iin

and on Vinh . We can see intuitively how Vinh allows
us to modulate the spatial extent over which the WTA
cells compete. In one extreme case inhibition is global
(i.e., Vinh = 5 V), and the WTA network allows only
one winner to be active at a time. In the other extreme
case, the cells of the WTA network are completely de-
coupled from each other (Vinh = 0), and all cells are
allowed to be simultaneously selected as winners. For
intermediate values of Vinh the network can be biased
to allow multiple winners to be active simultaneously,
as long as they are sufficiently distant from each other.

Combining the effects of both excitatory and in-
hibitory networks, we can bias the hysteretic WTA net-
work to exhibit different functional behaviors. Fig. 6
shows a comparison between the behavior of the clas-
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Fig. 5. Effect of lateral excitatory coupling on the hysteretic WTA network. (a) Output currents Iall (see Fig. 1(a)) measured at each pixel of the
network for four increasing values of Vex . The inset shows a fit of the data from pixel 2 to 20 with an exponential function. (b) Output currents
Iall measured for three increasing values of Iin . Each data set is normalized to the maximum measured current.
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Fig. 6. Scanned output currents of hysteretic WTA network state (top solid-line), of hysteretic WTA output (bottom solid-line) and of classical
WTA output (bottom dotted line). (a) Input currents are applied to pixel 1 (Vgs,1 = 1.1 V), pixel 12 (Vgs,12 = 1.0 V) and pixel 13 (Vgs,13 = 1.0 V),
lateral excitation is turned off (Vex = 0 V) and inhibition is global (Vinh = 5 V). Both the basic WTA network and the hysteretic WTA network
select pixel 1 as the winner. (b) Input signals and network bias settings are the same as in (a), but lateral excitation is turned on (Vex = 1.825 V).
The basic WTA network keeps on selecting the strongest absolute input as the winner (pixel 1), but the hysteretic WTA network selects the
region with two neighboring pixels on, because it has a stronger mean activation. The total current entering pixel 12 is higher than the one
entering pixel 13 due to the local excitatory feedback current. (c) Input currents are applied to pixels 5, 12 and 16 (Vgs,5 = 1.2 V, Vgs,12 = 1.1 V,
Vgs,16 = 1.0 V), lateral excitation is turned off and inhibition is global (Vex = 0 V, Vinh = 5 V). Both the basic WTA network and the
hysteretic WTA network select pixel 5 as the winner. (d) Input signals and network bias settings are the same as in (c), but inhibition is local
(Vinh = 3.35 V). If inhibition is not global, the hysteretic WTA network allows multiple winners to be selected, as long as they are spatially
distant (note that pixel 16 is selected as local winner, despite pixel 12 receives a stronger input current).
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Fig. 6. (Continued )

sical WTA network and the behavior of the hysteretic
WTA network for different input distributions and
different settings of Vex and Vinh .

Fig. 7 shows perhaps one of the most interesting re-
sponse profiles that can be obtained combining lateral

excitation and local inhibition in this WTA network:
the center-surround response profile was obtained by
stimulating the central cell of the network with a con-
stant input current, for a fixed value of Vex and different
values of Vinh .
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Fig. 7. Response of the hysteretic WTA network to a single pixel input (pixel 13, with Vgs,13 = 1.1 V) for a fixed value of Vex = 1.825 V.
(a) Current output for 4 different values of Vinh . (b) Relative difference between output of the network with global inhibition (Vinh = 5 V) and
output of the network with 3 different values of Vinh .

4. Applications

Besides being a practical, compact, low-power circuit
for generic applications that require a winner-take-all

type of computation, the circuit proposed in this pa-
per is particularly useful in all those applications that
involve the processing of sensory signals and the se-
lection of one or more inputs (e.g., for determining
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motor actions in a sensory-motor system). The center-
surround response profile of the network shown in
Fig. 7 is a rough approximation of a difference of two
Gaussians (DOG), which in turn approximates closely
a Laplacian of a Gaussian ∇2G. It has been argued
that this type of operator is ideal for detecting intensity
changes in sensory stimuli [24] and resembles closely
the response profile of many types of neurons, ranging
from simple cells in the visual cortex of mammals [25]
to cells in the somatosensory cortex of rats [26], to neu-
rons in the midbrain of barn owls [27]. Examples of ap-
plications that exploit the local excitatory feedback and
distributed hysteresis circuits described in Sections 2.1
and 3.1 include visual tracking of targets whose im-
ages shift smoothly from one pixel to the next [19,28].
Another example of an application that exploits the
center-surround response properties of the hysteretic
WTA network is given by multi-chip selective attention
systems such as the one described in [29]. In these kinds
of systems, sensory signals generated by silicon reti-
nas [30], silicon cochleas [31] and other types of neu-
romorphic sensors are sent to a WTA network, which is
then used to select one or more inputs, corresponding to
the most salient input. Selective attention systems that
use this kind of WTA network could thus be used for
optimizing the allocation of computational resources
by selectively processing only the regions in the sen-
sory space that lie in the immediate neighborhood of
the selected location and neglecting all other regions.

5. Conclusions

We presented an extension of the current-mode WTA
circuit originally proposed in [1], adding local excita-
tory feedback, diode-source degeneration, lateral ex-
citatory coupling and lateral inhibitory coupling. Al-
though some of the extensions presented have already
been proposed in the past, the circuit described in this
article is the first one to implement all of them in the
same circuit. We described the functional relevance of
the enhancements proposed and derived analytically
the dependence of the lateral coupling on the circuit pa-
rameters. We designed and fabricated a CMOS VLSI
chip containing both the classical WTA network and
the enhanced WTA network “back-to-back,” in order
to perform an accurate comparison between the two
circuits. We characterized the circuits and presented
experimental data to show the behavior of the imple-
mented WTA networks. As demonstrated in the pre-

vious sections, the circuits proposed are suitable for
integration into analog VLSI neuromorphic systems.
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