
obstacle avoidance, and tracking. Faloutsos et al. (2001) show a
highly realistic physics-based simulation of complex human body
motions such as falling and standing up using a detailed anatomi-
cal model of the human skeleton. It would be a major challenge
to achieve this degree of anatomical accuracy in a physical robot
model.

Even if both implementations are feasible, computer simula-
tions could be more useful tools in modeling biological behavior
than robots, since they provide full control over the entire action-
perception cycle. Furthermore, simulations are not restricted to
real time or real size, so they can represent biological processes
that are too slow, too fast, too large or too small for a real-world
robot implementation. Neumann and Bülthoff (2001) use com-
puter simulations to demonstrate that three-dimensional flight
with all six degrees of freedom can be visually stabilized using
models of spatial orientation strategies found in insects. These
strategies exploit the distribution of local light intensities and lo-
cal image motion in an omnidirectional field of view, and include
mechanisms for attitude control, course stabilization, obstacle
avoidance, and altitude control. The motor system and flight dy-
namics of the artificial agent is a simplified model of the fruitfly
Drosophila and includes effects of drag due to air viscosity. With
computer simulations it is possible to represent such effects,
which would be extremely difficult to achieve in a robot imple-
mentation.
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Abstract: While robotics has benefited from inspiration gained from bi-
ology, the opposite is not the case: there are few if any cases in which ro-
botic models have lead to genuine insight into biology. We analyze the rea-
sons why biorobotics has been essentially a one-way street. We argue that
the development of better tools is essential for progress in this field.

We will here use the term robot to describe a hardware model of
a biological system whose interaction with the physical environ-
ment, both in terms of sensors and of actuators, forms an essen-
tial part of the model. The question asked in the title of Webb’s 
article is whether such robots can be useful for understanding bi-
ology. Our perspective as a group working at the interface between
biology and robotics is that robot models have the potential to
make considerable contributions, with significant advantages over

other styles of analysis, but that this potential is not being fully ex-
ploited at this time.

Robots vs. other models. We compare robot models with com-
putational models (i.e., numerical simulations) and theoretical
models (i.e., mathematical abstractions) on the one hand, and bi-
ological models, on the other. Computational and theoretical
models are devoid of any physical substrate. Although they are
comparatively easy to implement, compared to a robotic model of
the same biological system, oversimplification due to abstraction
gone too far is a significant risk for them. For instance, the mod-
eller must decide what (if any) external noise is to be included and
what form to give it; this decision may influence the outcome
strongly. A robot model will by its nature be subject to all the ac-
tual constraints and conditions of the real world, which cannot be
ignored or finessed away. Another disadvantage of computational
models is that some properties of the system or its environment
may actually be more difficult or costly to simulate in software
than in hardware (e.g., nonlinear friction, requirement for real-
time response, etc.).

Biological models – those using organisms, cultured cells, brain
slices, and so on as their substrate – have other limitations. First,
they are vastly more complicated than hardware models, involv-
ing complex biological tissue or even whole organisms. Gaining a
deep understanding of the system may therefore be difficult. Not
only is a robot model simpler than an animal model; since we con-
struct it ourselves, its components and their interactions are
known down to the lowest level.

In principle, using robot models rather than animal models may
also be preferable because of ethical concerns. At this time, we
feel that this is of limited importance because the current level of
robotics does not allow detailed modelling of behaviors that are
only found in animals of higher phyla, for which strong ethical con-
siderations come into play.

A one-way street – so far. Despite these benefits, however, the
flow of information between biology and robotics is at present al-
most entirely one-directional. While machine builders receive in-
spiration from biology, examples of significant discoveries in bio-
logical systems that were inspired by building robots are, at best,
rare. Webb lists some examples in her target article, but they are
few and far between. It is not clear whether there are yet any cases
in which robot models lead to nontrivial, successful predictions
that have been actually confirmed in animals. This is in marked
contrast to other modeling techniques, notable especially in com-
putational neuroscience, where computer modelling has become
a respected technique among biologists; the surest sign of this be-
ing that many experimental groups routinely develop computa-
tional simulations themselves.

Why has robotics not been similarly successful? One reason is
because the field is still relatively new and small. Biorobotics, in
the sense of robots being used to provide insight into biology, ar-
guably started about fifteen years ago with a paper by Brooks
(1985), several decades after computational models were first in-
troduced. Furthermore, the number of active researchers in the
field is still very small. This is not counting the large number of
those who may have completed one robotics project and then re-
verted to more classical methods. We have encountered a large
number of cases of model recidivism, in which a computational
model was implemented in hardware but, in the further course of
the project, the hardware implementation was abandoned in fa-
vor of future development of the computational model. Presum-
ably, it was found that pursuing the hardware implementation is
more difficult, expensive, and time-consuming than the imple-
mentation of a simulation. This brings us to the second issue, the
difficulty of the approach.

Constructing robots is a difficult, expensive process that takes a
long time from original design to finished prototype. Moreover,
materials are non-standard, and at present, essentially every
model has to be developed from scratch. Without doubt, the field
would make much faster progress if a robotic equivalent of the PC
existed – a low-cost, universally available, and standardized plat-
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form allowing rapid prototyping and seamless collaboration of
large groups of researchers. A few candidate systems exist, both in
hardware (e.g., Lego MindstormsTM [http:www.legomindstorms
.com], the K-team robots [http:www.k-team.com], Tilden’s bugs
[Haslacher & Tilden 1995]), and in software (e.g., IQR [Verschure
& Voeglin 1998]) but at this time it is not clear whether any of
these, or any others, will be able to play the role for biorobotics
that the PC played for computational modelling.

The way out. While all of this may sound pessimistic, we remain
hopeful about the future. First, we believe that systems-level ap-
proaches will increase in importance. Second, although we are still
far away from the situation in computation where a nearly uni-
versal hardware infrastructure is cheaply and readily available,
prices of robotic equipment have come down by several orders of
magnitude in less than a decade, and the trend continues. Devel-
oping hardware models of biological systems may never become a
method for everyone, but it will play a larger role once tools be-
come available that will make robotic modeling accessible to a
larger part of the scientific world.
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Abstract: Biology can inspire robotic simulations of behavior and thus ad-
vance robotics, but the validity of drawing conclusions about real behav-
ior from robotic models is questionable. Robotic models, particularly of
learning, do not account, for example, for (a) exaptation: co-opting of pre-
viously evolved functions for new behavior, (b) learning through observa-
tion, (c) complex biological reality, or (d) limits on computational capacity.

Although Webb presents an important review of robotic models,
including excellent guidelines for their biological relevance, she
admits that “a model that behaves like its target is not necessar-
ily an explanation of the target’s behavior,” that is, that correla-
tion is not necessarily causation. Such oft-repeated statements,
however, do not dampen her enthusiasm for robotics as a means
to understand biological form and function. What her account
lacks is additional appreciation of potential problems inherent in
using robotics to answer biological questions. She fails to ac-
knowledge exaptation, observational learning, and complexity as
biological reality; she underestimates limits on computational
capacity.

Exaptation, or the co-opting of previously evolved functions to
do new things, can seriously compromise robotic simulation. Evo-
lutionary forces work on existent biology, and thus real-life biolog-
ical solutions may involve mechanisms less efficient than those
used robotically. Hewes (1973), for example, argues that spoken
language was derived from gestural forms without major neural re-
structuring. Data supporting Hewes’ hypothesis – and the notion
that exaptation of gestural neural substrates for communication
may be extremely widespread – are that parallel development of
physical and communicative combinatorial acts exists in humans,
nonhuman primates, and even Grey parrots (Greenfield, 1991;
Pepperberg & Shive 2001). Mechanisms used by a robotic system
to model acquisition of spoken language de novo might reproduce
data, but are unlikely to use circuits derived initially for stacking
cups in order to combine labels. Thus, its mechanisms would be
removed from, and say little about, those of biological systems.

Observational learning is also widespread in animals (Heyes &
Galef 1996). Animals would die before they could reproduce if

they had to learn skills such as predator avoidance or what to eat
via the trial-and-error mechanisms that are currently the basis for
computer modeling (Pepperberg 2001). Even in the most elegant
attempts at imitation simulation, which involve some form of pro-
gramming by example, the extent to which the computer learns is
limited (e.g., Lieberman 2001; Weng et al. 2001). Thus, the cur-
rent relevance of robotics to forms of learning beyond simple as-
sociationist principles, and to real-life systems, is limited.

In a related vein, biology is complex. Advanced learning in-
volves the ability to choose the set of rules, among many learned
possibilities, from which the appropriate response can be made,
and the creativity to build upon learned information to devise
novel solutions to a problem. In contrast, conditioned learning is
limited in scope in that it does not allow a robot even the ability to
alter behavior quickly based on the immediate past, much less al-
low immediate flexibility to respond to changing conditions. True,
brute force systems such as Big Blue win chess games with stun-
ning success (e.g., Campbell 1996), but such systems cannot learn
in a broad manner, that is, cannot integrate new and existing
knowledge to solve novel problems, take knowledge acquired in
one domain to solve problems in another, or form and manipulate
representations to attain concrete goals. The point is not that 
associative/conditioned learning is irrelevant: It exists, is a basis
for learning, can be seen as basic to the programming language of
learning . . . ; but it is not the appropriate overall program for
learning, because it does not engender generalization, transfer, or
insightful behavior. The simple initial association of stimulus and
response may be what is first linked in memory in humans, but for
humans repeated interactions in the real world both sharpen and
broaden the connections (Bloom 2000); what results is a repre-
sentation. Robots can indeed be programmed so that repeated in-
teractions improve their decision-making ability, and one might
even argue that statistically-based similarity coding might consti-
tute a representation. Advanced learning, however, derives from
manipulation of representations. What is needed to devise an in-
telligent learning machine, therefore, is not a more efficient pro-
gram that takes a stimulus as input and uses various rules to pro-
duce an expected response, but one that takes that stimulus and
uses creativity, reasoning, and decisions based on context to pro-
duce an appropriate, adapted, adaptive behavior. So far, robotics
cannot simulate such behavior.

Finally, the computational or robotic capacity used to produce a
model might be less than the computational capacity of the living
system; we cannot discount real-life mechanisms because simula-
tions cannot reproduce the data. Webb cites Kuwana et al. (1995),
who must use the actual antenna of moths on their robot model be-
cause available gas sensors are ten thousand times less sensitive
than the biological system. Later she comments on the rejection of
lobsters’ use of instantaneous differences in concentration gradi-
ents between their two antennules to do chemotaxis, simply be-
cause robotic implementation of this algorithm in the real lobsters’
flow-tank failed (Grasso et al. 2000) – that is, she implies that fail-
ure could be merely a consequence of the quality of the robotic
sensor. I applaud Webb’s inferences, but suggest that these prob-
lems are more serious than she surmises.

In sum, robotic design can advance from attempts to simulate
animal behavior without worrying about simulating exact mecha-
nisms. But using current robotic simulations (which for learning
are predominantly based on associationist principles) to answer
questions about real-life systems can lead into a trap identical to
that of Skinnerian behaviorism, which found many situations these
same laws could not explain. Anomalous activities of animals whose
natural responses to stimuli could not be reshaped by behavioris-
tic training (e.g., Breland & Breland 1961; see review by Roitblat
1987) required a new paradigm in which animals were seen as
multi-level processors of information (Kamil 1984; 1988; Pepper-
berg 1990). This need was made even clearer by behavioral ecolo-
gists, whose data could be explained only by positing mechanisms
such as selective attention and long-term memory (e.g., Kamil &
Sargent 1981; Pyke et al. 1977; see also Roitblat 1987), which were
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