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Abstract

The Guaranteed Frame Rate (GFR) service is viewed as the most promising
ATM service for carrying aggregate TCP/IP traffic over large distances. In this
work, we develop an analytical model to assess the performance of TCP over
the Differential Fair Buffer Allocation implementation suggested by the ATM
Forum. We consider the problem of a single GFR VC fed by multiple TCP
Reno sources. The proposed model distinguishes itself from prior work in two� The first author of this work was supported in part by the “Comissionat per a Universitats
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ways: it captures the behavior of aggregate TCP traffic and it explicitly allows
for queue analysis. From a modeling point of view, our study shows that the
reactive behavior of TCP in congestion avoidance can be approximated by a
two-node Markov chain. In terms of performance measures, we quantify the
impact of traffic aggregation on queueing performance. Among many other
results, our model predicts that, although the mean queue length seems to
reach a maximum at a certain aggregation level, the mean loss probability
appears to increase linearly with the number of sources.

Keywords: Guaranteed Frame Rate, Differential Fair Buffer Allocation, TCP
Flow and Congestion Control, Internet Backbones, Matrix-Geometric
Methods.

1 Introduction

The Guaranteed Frame Rateservice category (GFR, formerly UBR+) was
proposed by the ATM Forum [3] as an enhancement to the UBR service. GFR
aims to provide Minimum Cell Rate (MCR) guarantees and a fair share of the
excess bandwidth without the cost of rate-based flow control. Service guaran-
tees are provided in terms of complete AAL5 frames, making it particularly
suitable for internetworks and other frame-based applications that were not
designed to run over Quality of Service (QoS) networks. Two distinct confor-
mance definitions coexist. GFR.1 specifies that the network must convey the
CLP bit of the ATM cells transparently, and, therefore, that frame tagging is
not allowed. In such case, each ATM node relies on its own resources to dis-
tinguish between minimum rate guarantee eligible and ineligible frames. The
GFR.2 conformance definition allows tagging, and thus provides the network
with an explicit marker for eligible and ineligible flows.

Three GFR implementations have been suggested by the ATM Forum [3].
A first implementation uses a single FIFO buffer ruled by a double Early
Packet Discard (EPD) scheme and relies on frame tagging to discard QoS non-
eligible packets (GFR.2). A second implementation requires per-VC queueing
and uses a Weighted Fair Queueing (WFQ) scheduler to share the bandwidth



among the VCs. A third implementation, the Differential Fair Buffer Alloca-
tion (DFBA) scheme, uses a FIFO queue, dynamic thresholds, and probabilis-
tic drops to provide approximate MCR guarantees. An alternative implemen-
tation was proposed by Cerdán et al. [11]. Other possible implementations are
reviewed in [2].

Bonaventure showed that, in many circumstances, the FIFO with tagging
implementation does not allow the TCP sources to make efficient use of the
reserved and excess bandwidth [4, 5]. The main cause of this are undesirable
interactions between the F-GCRA tagging and TCP flow control. TCP traffic
is inherently bursty and the losses enforced by F-GCRA and EPD are highly
correlated. Correlated losses cause TCP to timeout and throughput to drop
substantially. The WFQ implementation is known to perform much better [4,
5]. However, its high implementation complexity conflicts with the objectives
of simplicity pursued by GFR.

We have already investigated the fairness of DFBA with the help of simula-
tions [6]. In this work, we develop an analytical model for the performance of
TCP over DFBA. Modeling objectives are two-fold: to capture the behavior of
aggregate TCP traffic, and to study the interaction between TCP flow control
and the DFBA scheduling mechanisms.

Numerous attempts have been made to capture the behavior of TCP by the
use of analytics. Misra et al. [23] modeled the behavior of the TCP con-
gestion window when subjected to independent packets losses. Results are
shown fairly accurate for the Early Random Drop (ERD) and the Random
Early Detection (RED) packet dropping policies (see [13] and [20]). Kumar
[19] designed a stochastic model to evaluate the performance of various TCP
implementations when communicating over a wireless link. Padhye et al. de-
veloped [25] a closed-form formula for the end-to-end throughput of internet
ftp transfers. In their study, internet-wide measurements show that such trans-
fers are well modeled by connections in congestion avoidance.

None of these models allow for queue analysis, nor can they be resolved for
more than a few TCP connections. A step in this direction was made by Casetti
and Meo [10], who have isolated the source model from the network model

and performed reciprocal tuning of the two models to obtain steady-state mea-
sures. However, in addition to not being aimed at modeling aggregated TCP
traffic, their method disregards the correlation present at the output of the TCP
sources, and thus cannot be applied to obtain the queue occupancy measures.

In this work, we consider the problematic of a single GFR DFBA queue
fed directly by multiple TCP sources (no shared-media LAN). Two different
models for TCP flow control are proposed. A first model captures in some
details the behavior of the congestion window of a single TCP connection
in congestion avoidance. It consists of a discrete-time Markov chain, where
each effective window size is associated an independent state. Throughout this
work, we will refer to this model as theDetailed Source(DS) model.

Then we simplify the DS model through a binary quantization of the win-
dow size. We map the states of the underlying process onto a two-node
Markov chain and use heuristic to derive “equivalent” transition probabilities.
We shall refer to this model as theApproximate Source(AS) model. We sup-
port our heuristic through a first-passage analysis of the Markov chain ruling
the DS model.

Next we show how to multiplex one detailed source (if any) with an arbitrary
number of approximate sources, and include an approximation of a DFBA
queue in our analysis. The Markov chain obtained forms a level-dependent
quasi-birth-and-death (LDQBD) process for which a matrix-geometric solu-
tion of the steady-state vector exists (see [15], [8] and [24]). The system
modeling approach we take is inspired from Blondia et al. [9]. The matrix-
geometric method was proposed by Wuyts et al. [26].

The structure of this paper is as follows: Section 2 introduces the reader
to the Differential Fair Buffer Allocation implementation of the GFR service
category. Section 3 discusses the modeling assumptions in details. The model
is developed in Section 4, where we thoroughly cover the modeling of TCP, the
traffic multiplexing and the queue analysis. We show some exemplary results
in Section 5 and conclude our work in Section 6.



2 Differential Fair Buffer Allocation

Differential Fair Buffer Allocation was proposed by Goyal et al. as a possible
implementation of the GFR service [3, 16]. Their scheme uses a single FIFO
queue and relies on per-VC accounting to provide service guarantees. Alike
to RED gateways [13], DFBA attempts to control the average queue length
by probabilistically dropping packets. Unlike RED, DFBA’s drop scheme is
stateless (i.e. losses are geometric), and solely relies on instantaneous queue
measurements.

Consider a GFR queue shared by� active connections (VCs), identified
by � , such that	 
 � 
 � . A VC is active when the queue contains at
least one of its cells. Each VC is associated a weight� � equal to the ratio
of the per-VC Minimum Cell Rate (MCR) allocation over the GFR capacity
 �� � ���� �� . The state variable� � tracks the number of cells belonging to a
single connection� that are queued in the buffer. The total buffer occupancy is
denoted by� � � � � . As in other GFR implementations, DFBA defines two
static thresholds, LBO and HBO. If� is below LBO, all packets are accepted.
Above HBO all packets are discarded. In the range LBO
 � 
 HBO, all
CLP=1 frames are discarded. The acceptance of CLP=0 frames depends on the
connection’s estimated fair share�� � � � � of the buffer. If � �� �� � � � � ,
the connection uses less than it’s fair share and all CLP=0 frames are accepted.
If � �� � � � � � � , CLP=0 frames are dropped with probability

� �� ���
� �! � � � � � �� � " 	  � � � � #%$ " 	  � # �  �& '

(& '  �& ' ) (1)

where� � � � � , and � � defines the maximum drop probability enforceable
by DFBA. Equation 1 is function of two additive terms. The left-hand term
is a measure of relative fairness and requires per-VC accounting. It is known
as thefairness componentof the DFBA packet drop probability. The second
term varies linearly with the total buffer occupancy if it lies between LBO
and HBO. Since it attempts to keep the average buffer occupancy low, we will
refer to it as theefficiency component. The parameter� determines the relative
weights of the fairness and the efficiency components, and is typically set to

0.5 [16]. Goyal et al. showed that DFBA can provide MCR guarantees for
TCP traffic for various buffer sizes and bandwidth allocations [16]. DFBA
was also shown to favor connections with small MCR when sharing the link
bandwidth. Setting� � � " 	  � � � � #+* can help to reduce the bias against
large MCR connections [16].

DFBA differs from the other suggested GFR implementations in various
aspects. Firstly, DFBA does not support the Maximum Burst Size (MBS)
parameter in the GFR traffic contract, which means that bursts smaller than
the MBS could still experience a relatively high loss probability. Secondly, the
drop policy assumes that the traffic sources react to losses by lowering their
transmission rate. DFBA does not provide strict isolation between the VCs,
and a non-collaborative source could certainly use the bandwidth reserved to
others. Moreover, there could be problems of fairness between sources using
different flow control mechanisms.

In a previous paper, we investigated the fairness of DFBA using simulation
[6]. Our main findings were:

, DFBA is not affected by the presence of high priority rt-VBR traffic in
the ATM switch, but is unable to guarantee a fair share of the link to VCs
with different MCR allocations and round-trip-times.

, The average buffer occupancy can be effectively controlled by the param-
eter � � , but� had virtually no effect on the fairness of DFBA.

Despite these flaws, the DFBA proposal remains very interesting, because it
simply tackles the problem of providing (approximate) per-VC service guar-
antees for TCP over ATM. This study aims to provide some further insights
on the interaction between aggregate TCP traffic and DFBA.



3 Modeling Assumptions

3.1 TCP Reno

The basis of the approach taken in [9] is, as a first step, to observe the system
at time instants at which the traffic sources change their output rate. At this
time scale, the nature of TCP traffic is solely determined by flow control mech-
anisms. Disregarding lower time scales reduces the state space considerably,
since we do not need to keep track of the phases of the individual sources. As
a second step, one may investigate the impact of the correlation structure at
lower time scales on system performance (not included in this work).

For TCP sources, the time scale of interest is defined by the round-trip-time
they experience. As in [25], we assume the round-trip-time experienced by all
TCP connections to be of fixed and equal value� - - . This value includes all
transmission and queueing delays of the forward and return paths.

Since both TCP and GFR are defined at the packet level (AAL5 frames), no
information is lost when disregarding the ATM cell level. We assume that TCP
data packets are of constant size and equal to the TCP Maximum Segment Size
(MSS). Each TCP packet is mapped directly onto one AAL5 CS Protocol Data
Unit. We define the duration of a time slot as the necessary time to transmit
one TCP packet over the GFR link. The GFR Peak Cell Rate is set equal to the
GFR service rate,�� � � , and is assumed of constant value (not high-priority
traffic), which fixes the duration of the time slot. All time measures will be
expressed in slots. For instance, the system will be observed every� - - time
slots.

Acknowledgments packets (acks) are assumed to be of negligible size, to
consume no bandwidth and to suffer no losses. Acks are sent back to the
sender� - - time slots after they have been served by the GFR queue. Thus
the data flow considered is unidirectional.

All connections are assumed long-lived, that is, persistent and in the steady-
state. All TCP sources are assumed greedy in the sense that they always have
data to send. Theses assumptions generally hold for large data transfer (e.g.
FTP or persistent HTTP connections), but do not necessarily hold for current
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Figure 1: Self-clocking (links) vs. congestion avoidance (right).

web traffic. All sources are also assumed in congestion avoidance. More
precisely, the relationship
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must hold. As shown in [25], this situation is typical of internet connections,
where delays are large, losses are substantial and the average congestion win-
dow is small with respect to the bandwidth-delay product. Under this assump-
tion, the TCP source emits close to an entire window of packets every round-
trip-time. This behavior contrasts sharply with TCP’s self-clocking property
which is exhibited if, and only if, the average congestion window size is close
to the bandwidth-delay product [18]. Figure 1 illustrates those two ranges
of operation. Under Equation 2, the TCP traffic exhibits substantial correla-
tion, that is that it tends to be emitted and received in bursts. Our model aims
specifically at the operating range expressed by Equation 2.

The newest TCP implementations include various mechanisms to prevent
timeouts as they occurred in TCP Tahoe. In TCP Reno, timeouts are either
caused by a sudden variation in the measured RTT or by multiple losses within
a single flight of packets [1]. Assuming a fixed RTT forbids the former, and
the latter is easily solved. In absence of excessive network delays, the only



source of timeouts is a failure of the Fast Retransmit algorithm. Fast Re-
transmit is known to perform well under the assumption of independent losses
[17], as the probability of multiple losses within a single flight is very small.
As in RED, DFBA’s drop scheme is probabilistic and achieves a certain level
of independence. In our simulations with TCP Reno, timeouts typically ac-
counted for around from 10 to 15 percent of the total number of losses [6].
TCP NewReno and SACK (see [14] and [22]) are expected to perform better
[12]. In this study, we assume TCP timeouts to occur rarely and neglect them.
This also frees us from modeling the complex adaptation behavior of the TCP
retransmission timer (RTO).

Having assumed persistent connections and neglected timeouts, we do not
need to model the TCP Slow Start phase. We assume the TCP source is always
above the slow start threshold and neglect its adaptation. We also neglect the
complex mechanics of the Fast Recovery algorithm, as they have little effect
on the congestion window distribution [23] and on the achieved throughput
[25]. In our model, a Fast Retransmit is immediately followed by the conges-
tion avoidance phase.

3.2 Differential Fair Buffer Allocation

Recall that DFBA involves two types of thresholds: a set of static thresholds
LBO and HBO, enforcing a low average total buffer occupancy, and a dy-
namic threshold� � � � � � , estimating the buffer’s fair share belonging to
VC � . Dynamic thresholding undoubtedly is an important feature of DFBA,
as it allows per-VC guarantees to be provided. However, it is hardly feasible
to track more than one buffer occupancy without jeopardizing our objective
of modeling aggregate TCP traffic. Consequently, we choose to disregard dy-
namic thresholding and target the model at capturing the behavior of a single
GFR VC. The fairness of DFBA was evaluated by means of simulation in a
previous paper [6].

DFBA signals congestion to the TCP sources using probabilistic drops. Un-
der the above assumptions, the packet drop probability4 increases linearly
from 0 to � � as the total buffer occupancy varies from LBO to HBO. We also

assume that DFBA does not discard the packets until they are served, that is,
dropped packets are nevertheless accounted for in the queue statistics. Assum-
ing the traffic reactive, the overall loss probability is small. As this choice is
also consistent with the measurements made in [16, 6], this assumption should
have little impact on the accuracy of the results. We shall refer to this assump-
tion as thevirtual lossesassumption. Finally, we assume that the probability of
overflow of the DFBA queue is very close to zero. This allows us to disregard
loss scenarios resulting from such overflow. This assumption holds as long as
traffic is flow controlled traffic and the network is properly dimensioned.

4 A Matrix-Geometric Model for DFBA

4.1 Modeling the TCP congestion window

According to the assumptions made in the previous section, the state of a TCP
connection is fully described by the discrete-time discrete-value random vari-
able 576 8 9: 
; 
< = representing the size of the congestion window at
observation period; , that is the time slots; � � - - 
> � "; $ 	 #� � - - . Each
instance of6 8 draws its value from the finite set of states?@ � 576 9 	 
 6 
6 A BC = , where the constant6 A BC represents the smallest of either the receiver
or the sender maximum window size. In case all packets sent during period;

have been acknowledged,6 8 DE follows

6 8 DE @ � 6 8$ 	 F GH 6 8 � 6 A BC (3)

@ � 6 A BC I GJK LH 1M N L I

which corresponds to the linear growth of the congestion window. In the case
of at least one loss during period; , the window size is halved, that is

6 8 DE @ � O6 8 ��P Q F GH 6 8 � 	 (4)

@ � 	 GJ K LH 1M N L I
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Figure 2: TCP Congestion Window Model

where the brackets stand for the floor operation. Figure 2a shows how packets
are assumed to be sent in a batch at the beginning of an observation period.
Figure 2b illustrates the two possible evolutions of the window size.

In order to derive the corresponding transition matrix, we need to introduce
the loss function

R "S IT I 4 # � �
T S ) " 	  4 #VUW X 4 X I

which describes the probability of independently loosingS packets within a
window of sizeT , given a loss probability4 . We are looking for a set of
transition matrices57Y U " 4 # I T Z : = of size6 A BC[ 6 A BC which correspond to
the state transitions causingT packets to be accepted in the GFR queue during
an observation period. Clearly, the matrixY " 4 # � � Y U " 4 # is a stochastic
transition matrix ruling the behavior of6 8 . The transition probabilities solely
depend on the loss probability, a feature which we shall exploit later. Under
the virtual losses assumption, the transition matrix is expressed by

\Y U " 4 #] � ^ � R ": IT I 4 # F GH � � T I _ � T $ 	 I 	 
 T � 6 A BC� R ": I6 A BC I 4 # F GH � � _ � 6 A BC � T� 	  R ": IT I 4 # F GH � � T I _ � O � �P Q I 	 
 T 
 6 A BC� : GJK LH 1M N L`

(5)
Each instance ofY U " 4 # contains only two nonzero elements which suggests
that sparse matrices can be used to reduce computational complexity.

Despite its apparent simplicity, this model hardly supports the multiplexing
of more than a few sources, because the number of states required,"6 A BC #ba ,
grows exponentially with the number of sources multiplexedc .

4.2 Approximate Source Model

We subdivide the state space? into two disjoint subsets,? d and ? E , such that? d@ � 576 9 	 
 6 
 6 A BC e * = and ? E @ � 5 6 9 6 A BC e * $ 	 
 6 
 6 A BC = , and
define a random variablef6 8 , such that the process6 8 is mapped onto a two-
node semi-Markov chain (arbitrary sojourn times). An example for6 A BC � g

is presented in Figure 3. Formally, the mapping follows

f6 8 @ � : I 6 8h ? d (6)

@ � 	 I 6 8h ? E I

which constitutes the process we want to approximate. If we inspectf6 8 , we
observe sojourn times that are not strictly geometrically distributed, and that
can therefore hardly be captured by a regular Markov chain (geometrically
distributed sojourn times). Nevertheless, we assume that the sojourn times do
not differ substantially from the geometrical distribution, and attempt to mapf6 8 onto a two-node Markov chain, as illustrated in Figure 4a. We need to
derive expressions for the inter-sets transition probabilities4 d and 4E , and for
the per-state expected sending ratesi d and iE , such that the model behaves as
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Figure 3: Mapping a six-node MC onto a two-node MC

closely as possible tof6 8 . First, we use heuristic to obtain a simple approxi-
mation. Then we justify our choice through an first-passage characterization
of the processf6 8 .
4.2.1 Heuristic-based Approximation

To obtain the per-state sending rates, we perform the binary quantization of
the congestion window illustrated in Figure 4b. We set the quantization step
to i � 6 A BC ��j , and fix to i d � i the rate at whichf6 8 emits packets if in state
0, and toiE � P i if in state 1.

Looking at Figure 3, we see that4E must account for all possible? E k? d transitions, whereas4 d depends on a single path. We define4E as the
probability of having at least one independent loss in a window size ofiE
packets, that is

4E @ � 	  " 	  4 # * l I (7)

assuming independent losses of constant probability of4 . This behavior is
consistent with the one of a TCP source, since the rate of the source is halved
when a loss occurs. To derive4 d we must account for the fact that the growth
from a window size ofi d to iE is linear. Again, under the independent loss as-
sumption, the probability of transmitting consecutively without lossesi rounds
of i I i$ 	 I` ` ` IP i  	 packets respectively, is" 	  4 #bm n lpoW l q e * (i.e. the shaded
area in Figure 4b ). We account for the linear growth, as well as for the fact
that the probability needs to be applied every round (and not everyi rounds)
by setting

ωmax

p1

p0

1-p0 1-p1

c 2c

0 1

c 2c1

Number of packets sent
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(a) Underlying Markov Chain
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0 c 2c

2c

c

(b) Rate Quantization

Figure 4: Approximate model for TCP’s reactive behavior

rs tu v7wx r ybz {|p} ~ | ���
� � (8)

4.2.2 Stationary Probabilities and First Passage Times

Let � tu v � s � � � y , where � s u v� � � � � � � � � � � � ��� �} y and � � u

v� � ��� �} �� � � � � � � � ��� y , be the stationary probability vector corresponding to
the transition matrix� v r y , that is, it fulfills � � v r y u � .

From the steady-state vector, we can compute the conditional expectations� v� � � �� s y and � v� � � � � � y , from which we can assert whether
our assumptions with regards to the rate quantization hold. The upper part of
Figure 5 shows them as a function of the loss probabilityr . The bottom part
plots the ratio� v � � � �� � y � � v� � � �� s y , which is shown to equal 2 for
a wide range of loss probabilities.

A formal way to obtainrs andr � is to characterize the sojourn times of the
semi-Markov chain�� � . Since the sets� s and� � are disjoint, this problem
can be treated as a first passage problem. Let� be a recurrent state and� be
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absorbing, we define� � ^ � \� ] � ^ as the time to absorption in state_ , condi-
tioned on6 8 starting in state� . We subdivide the transition matrix according
to ? d and ? E , that is

Y " 4 #@ � �
� d d � dE� E d � E E )

and define an associated transient process� d , such that all states belonging to? E are absorbing, whereas those from? d are maintained recurrent. In mathe-
matical terms, this means that

� d@ � �
� d d � dE� � ) I

and it can be shown that the corresponding mean absorption times follow

  " � � ^ # � "7¡  � d d #W E I F GH �h ? d I _ h ? E `

The metric   " � � ^ # represents the mean time spent in? d before absorption
occurs in_ , conditioned onf6 8 starting in state� . Therefore, the expression

f� d � ¢ d " ¡  � d d #W E £ � ¢ d £
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Figure 6: Deriving the transition probabilities

is the mean time spent byf6 8 in state 0 before entering state 1 for the first
time (£ is a column vector with unit values). A similar development can be
performed for	 k : transitions and leads to

f�E � ¢ E " ¡  � E E #W E £ � ¢ E £ `

From the sojourn times, we can obtain a second approximate of the transition
probabilities, that isf4 d � 	 � f� d and f4E � 	 � f�E .

Figure 6 compares the heuristic-based4 d and4E and the first passage-basedf4 d and f4E . We see that the heuristic-based transition probabilities provide a
good approximation of the first-passage metrics. They also have the advan-
tage of being well-defined for high loss probabilities, whereas we can hardly
inverseY for 4 � : ` 	 (Y " 	` : # is non-recurrent). The probability4 d was
ceiled to 	 � i as 4 k : , because the AS model tends to be greedier than the
DS model. In the rest of this work, we shall use the heuristic-based approach
when the AS model is employed.



4.3 Traffic Multiplexing

4.3.1 § Approximate Sources

Let us first consider the multiplexing of� approximate sources as defined
in the previous section. The state of such a system at a given time instant is
completely described by the random variable5 c 9: 
 c 
 � = , which counts
the number of sources in state 1. According to our quantization scheme, the
number of packets at the input of the queue per observation period follows

" c $ � # i .
The associated state transition matrix¨ " 4 # of size " � $ 	 #[ " � $ 	 # can

be obtained by defining two discrete random variables,© " 4 # and ª " 4 # , as the
number of: k 	 resp. 	 k : transitions occurring during the observation
period. The evolution of the variable is a Markov chain5 c 8 9; Z : = , wherec 8 DE � c 8$ © " 4 #  ª " 4 # and

« H " © " 4 # � ¬ # � �
�  c¬ ) 4+­ d " 	  4 d #¯®W aW ­

« H " ª " 4 # � ¬ # � �
c ¬ ) 4°­E " 	  4E #VaW ­ `

Assuming virtual losses, the matrix¨ " 4 # with elements \ ¨ " 4 #] � ^ �« H " c 8 DE � _ 9 c 8 � � # follows

\ ¨ " 4 #] � ^ �
A±² n ^³ ®W � q

´­µ A BC n d ³ ^W � q
« H " © " 4 # � ¬ #� « H " ª " 4 # � ¬  _ $ � # I (9)

for: 
 � I _ 
 � $ 	 .
4.3.2 One Detailed Source +§ Approximate Sources

Now consider the problem of multiplexing one detailed source and� approx-
imate sources. In this case, the Markov chain is ruled by5 "6 I c # 9 	 
 6 


6 A BC I: 
 c 
 � = . The two random variables are mutually independent, and
the transition probabilities are expressed by

« H "6 8 DE � _ I c 8 DE � S 9 6 8 DE � � I c 8 DE �; # � « H "6 8 DE � _ 9 6 8 DE � � #[« H " c 8 DE � S 9 c 8 DE �; # I

where the probabilities right-hand terms were defined in Equations 5 and 9.
The corresponding transition matrix is expressed by

¶ " 4 # � Y " 4 #· ¨ " 4 # I

where the binary operator· denotes the Kronecker product of two square
matrices.

4.4 Buffer Analysis

In this section we perform the buffer analysis for the two configurations de-
scribed in the previous section. We assume a finite queue of size¸b¹ ruled by
an acceptance mechanism which depends solely on the instantaneous buffer
occupancy.

4.4.1 § Approximate Sources

Assuming a service rate of 1 packet per time slot, the variation in the queue
index is expressed by the Markov chain5 T 8 9; Z : = such that

T 8 � " c 8$ � #  � - - � i

and is bound byº 
 T 
» , where º � �  � - - � i and» � P �  � - - � i . Since the input rate is quantized in steps ofi , we quantize the queue
accordingly and select a value of� - - such that it is a multiple ofi . The queue
occupancy at the end of round; follows the recursive equation5¼ 8 9; Z : =

such that
¼ 8 � ½ M 0 " ¸ I ½ ¾¿ ": I¼ 8W E $ T 8 # #`



The parameter¸ is the maximum buffer index and is set to¸b¹ � i . We define¨ U " 4 # as the transition matrix describing the source transitions leading to a
variation ofT in queue size (analogous to Equation 5). NegativeT values
are interpreted as decreases in queue size during the observation period. The
buffer transition matrixÀ is of the form
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ÃÄÄÄÄÄÄÄÄÄ

Å
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for the upper part and
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for the lower part. Since we assume that sources are reactive and that the
network is properly dimensioned, Equation 11 only accounts for the losses
enforced by DFBA and disregards the scenario of buffer overflow. The set of
matrices5 ¨ nñ qU 9 º 
 T 
» I: 
 ¼ 
 ¸ = is obtained by setting¨ nñ qU �¨ U " 4 # where the loss probability follows

4@ � : F GH : 
 ¼ i � � & '

@ � ñ lW òó ôõ ó ôW òó ô � F GH �& ' 
 ¼ i 
 (& ' (12)

@ � � F GH (& ' � ¼ i 
 ¸ö¹ `

The constant�& ' and (& ' are the DFBA lower and upper thresholds. The
parameter� defines the maximum drop probability enforceable by the accep-
tance scheme. The matrix defined by Equations 10 and 11 is highly struc-
tured and allow for matrix-geometric solutions [24]. For instance, if we set

÷ � 9 º 9 � 9» 9 and group the sub-matrices appropriately, a level-dependent
quasi-birth-and-death (LDQBD) process is obtained, that is

À �
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ú
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. . .

. . .
. . . ü nþ eÿW E q

� � � ý nþ eÿ q û nþ eÿ q
� �������

�
I

for which a simple solution of the steady-state solution exists [15].

4.4.2 One Detailed Source +§ Approximate Sources

To study the interaction between the DS and the AS models, one can include a
detailed source in the analysis. In such case, the variations in queue occupancy
follow 5 T 8 9; Z : = such that

T 8 � O "6 8$ " c 8$ � # i  � - - # ��� $ : ` � Q

where� is a quantization factor introduced to limit the size of the LDQBD ma-
trices. A development similar to the previous section also leads to a LDQBD
process.



4.5 Delayed Acknowledgements

The DS model can easily be modified to account for delayed acknowledge-
ments (one ack for� packets received). Equation 3 can be redefined such that

« H "6 8 DE � 6 8$ 	 # � R ": I6 8 I 4 # � �« H "6 8 DE � 6 8 # � R ": I6 8 I 4 #� " 	  	 � � #

F GH 6 8 � 6 A BC . The corresponding expected increment is	 � � for rounds
where no losses have occurred. In the case of the AS model,: k 	 transition
probability is simply set to

4 d � " 	  4 #bm n lpoW l q e *
i � `

4.6 Performance Metrics

Many performance measures can be obtained from the current model. Let

�� "	 # and 
 � "	 # be the steady-state probability mass and probability distribu-
tion functions of an arbitrary random variable� . The DS model allows us to
look at the congestion window distribution
 � " 	 # or at the mean throughput
achieved
6 �   "6 # packets per RTT. The AS model is mainly limited to the
mean throughput achieved by a single source,

�6 � "   " c #$ � # i � � packets
per RTT. At the queue side, we can either look at the buffer occupancy com-
plementary distribution function (CDF)� ñ "	 # � 	  
 ñ " 	 # or at the mean
queue length
¼ �   "¼ # packets and the associated variance� * ñ � � ¾H "¼ # .
To facilitate comparison, we shall plot the standard deviation� ñ along with
¼ . From 
 ñ "	 # and from the mapping expressed in Equation 12 we can also
compute the average loss probability
4 .

5 Performance Results

In this section we provide some results obtained from the proposed model and
discuss their impact on network performance. Firstly, we investigate the inter-
action between the detailed source and the approximate source models when

their traffic is multiplexed in the same queue. Section 5.3 shortly compares the
results to simulation. Section 5.4 evaluates the impact of the parameters� & '

and � on the queue and congestion window distributions. Section 5.5 inves-
tigates the impact of delayed acknowledgements on TCP throughput. Finally,
the last section assesses the impact of traffic aggregation on queue statistics.

5.1 Model Parameters

The maximum congestion window size6 A BC was set large enough to allow the
source to use its share of the available bandwidth, but not necessarily to the
bandwidth-delay product. A smaller6 A BC reduces the sizes of the QBD ma-
trices and has little effects on the results as long as the probability of reaching
a congestion window of6 A BC is small.

The default value fori is6 A BC ��j but we varied it to assess the sensitivity of
the model with respect to that parameter. The parameter� - - was set to keep
the system symmetric with respect to the queue increments and decrements.
This constraint is not required to obtain a QBD but the structure of the LDQBD
matrices becomes hard to track if we let the difference»  º vary. Setting» �  º fixes the structure ofý n� q Iû n� q and ü n� q . This constraint has little
influence on the results, because the sources are flow controlled, which causes
large queue decrements or increments to have a small probability. Finally, we
varied the quantization grain� such that the maximum queue increment» is
fixed. This fixes the sizes of the matricesý n� q Iû n� q and ü n� q .

5.2 Interactions between the DS and the AS models

Table 1 presents throughput results for various configurations. The AS model
appears to fairly share the bandwidth with the DS model. Note also the relative
insensitivity of the DS model to thei parameter.



6 A BC � i � ¸ LBO HBO � - - 
6 �6

a 60 1 20 8 1000 500 900 60 29.90 29.46
b 60 2 20 10 1000 500 900 90 29.57 29.52
c 60 2 15 10 500 250 450 75 25.33 23.35
d 60 2 25 11 500 250 450 105 31.39 35.41
e 90 3 30 18 500 250 450 190 36.61 41.66

Table 1: Multiplexing the foreground and background source models

5.3 Analytic vs. simulation results

This section is an attempt to validate the model using simulation. Figure 7a
compares two queue occupancy CDFs in which the queue occupancy is nor-
malized with respect to the queue size. The straight line plots� ñ " 	 # for the
multiplexing of 15 ASs. The dashed-dotted line is the result of a simulation
obtained for 15 TCP Reno sources multiplexed into a DFBA buffer. The sim-
ulation setup employed is described in detail in [6] and [11]. 15 VCs have
been setup, each of them VC carrying the traffic of a single TCP source. The
parameter� was set to 0.0 to limit the impact of the fairness mechanisms of
DFBA. .

The analytical and simulation results qualitatively have the same behavior,
but the model is far from being exact. Both predict an exponential decay of

� ñ " 	 # for indices larger than LBO. Below LBO, the Reno sources are greedier
than the analytical model. Above LBO, the model is not as reactive to packet
drops as TCP Reno.

Figure 7b compares the congestion window distribution obtained from con-
figuration e in Table 1 to a simulation involving four TCP sources multiplexed
in a GFR queue. Again, the curves have a similar outlook but the analytical
model can hardly be used to predict the congestion window of a single TCP
source. The main obstacle resides in the fact that the model holds for TCP
sources in congestion avoidance. To obtain such state with only four sources
sharing a high-speed link, the GFR buffer must be under-dimensioned (we
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Figure 7: Four TCP sources - Model vs. simulations

used 2000 cells in this simulation). In that range of operation, the congestion
window distribution strongly depends on the queue size, and the gap observed
between the model and the simulation has little meaning. Nevertheless, the
figure shows that the DS model not only captures the qualitative behavior of
the congestion window, but also that the assumptions made for the AS model
have little impact on the steady-state behavior of the DS source.

5.4 Impact of LBO and �

The LBO and � parameters provide control over the average queue length
(see [16, Chapter 6] and [6]). Figure 8a shows the mean queue length and
the standard deviation of the buffer occupancy as a function of LBO. Clearly,
the average queue length is a linear function of LBO. In addition, the variance
does seem to depend on LBO. In terms of throughput, static thresholds have
virtually no impact on the congestion window distribution (not shown). This
holds as long as the buffer is well dimensioned [16, Section 4.8].
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Figure 8: Impact of Drop Probability Function on Queue Distribution

We know that LBO can be varied without affecting the throughput. So
what is constraining its dimensioning? The threshold LBO defines a portion
of the buffer whose access is completely unrestricted. The larger its value,
the burstier the traffic generated by TCP. This is an important issue, given
that the mean queue length strongly depends on the level of aggregation (see
Section 5.6). We also know that� ñ "	 # decays exponentially above LBO. A
small LBO with respect to the buffer size keeps the sources under tight control,
but makes little use of the GFR buffer. Conversely, setting LBO too close to
HBO may prevent DFBA to control the average queue length efficiently. In
case the sources are non-cooperative, the results may be catastrophic. The
area between LBO and HBO must be large enough to accommodate sources
ranging from the tamest to the greediest behavior. A source of variability in
terms of greediness is the use of delayed acknowledgements (see Section 5.5).

Another way to control the average queue is through the maximum drop

probability � . Firstly, we found that the parameter� has marginal impact on
the congestion window distribution (not shown). Figure 8b shows that it does
not influence the the variance of the buffer occupancy. In contrast, the mean
queue occupancy varies non-linearly with� . The main difference between the
use of� or LBO to control the average queue length is that, with� , the size of
the unrestricted portion of the buffer is preserved. This is advantageous since
increasing LBO reduces protection against non-collaborative sources.

5.5 Impact of Delayed Acknowledgements

To evaluate the impact of delayed acknowledgements, we consider two con-
figurations: a GFR queue fed by three sources (one DS and two ASs) or by
15 sources. In the first configuration, the detailed source uses delayed ac-
knowledgements, whereas the approximate sources do not. Figure 9a plots the
achieved throughput for each source type as a function of the number of acks
per packet� . Clearly, TCP connections using delayed acks are disfavored by
DFBA.

Delayed acks also have significant impact on the queue statistics. Figure 9b
shows the mean queue length and the standard deviation for a buffer fed by 15
approximate sources. We see that delayed acks can reduce queueing delays,
but that they have a limited impact on delay variations.

5.6 Impact of aggregation level

In this experiment, we fix the product� i and assess the influence of increased
traffic aggregation on the queue and throughput statistics. Figure 10a plots on
the same scale the mean and the standard deviation of the queue occupancy
as a function of the number of sources� . We see that if, on one hand, the
variance or equivalently, the delay variation, seems to go down as the number
of sources increases (i.e. a multiplexing gain), the buffer requirements them-
selves increase substantially. From Figure 10a, we would expect the mean
queue length to reach a maximum for a certain aggregation level, but this level
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Figure 9: Impact of Delayed Acknowledgements

is beyond the reach of our analysis. Also, there appears to be a certain number
of sources for which the variance is maximum.

Figure 10b presents the mean loss probability
4 as a function of the number
of sources. In this case, the mean loss probability reaches 5% for 40 sources,
while the slope of the curve does not yet show any signs of falling down. This
raises serious questions with respect to DFBA’s ability to handle the massive
amount of TCP traffic carried over the Internet. Despite the probabilistic na-
ture of the drops beyond a certain average loss probability, real TCP sources
would start to timeout and the overall throughput would sink dramatically.

6 Conclusion

In this paper, we developed an analytical model for assessing the performance
of TCP over DFBA. We have shown that the reactive behavior of a single TCP
source in congestion avoidance can be approximated a by two-node Markov
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Figure 10: Impact of traffic aggregation

chain. Simulation results also showed the behavior of the proposed model to
be consistent with TCP Reno.

In terms of performance results, we quantified the relationship between the
parameters LBO and� and the steady-state buffer occupancy measures. We
also quantified the influence of delayed acks on the switch performance, and
showed that sources using delayed acks are disfavored by the packet dropping
mechanism.

We have also assessed the impact of traffic aggregation on queueing per-
formance. Our results show that the average queue length strongly depends
on the number of sources. They predict that the mean queue length should
reach a maximum at a certain aggregation level, but also that the average loss
probability could grow without bounds with the number of TCP connections.
This raises the question whether the DFBA proposal can effectively support
the large number of simultaneous connections carried on Internet backbones.
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