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Tel/Fax: 0041-52411153/1153, E-mail: ruedi@ini.phys.ethz.ch

When interaction among regularly spiking neurons is simulated, using mea-
sured cortical response profiles as experimental input, besides complex network-
effects dominated behavior, embedded periodic behavior is observed. This is
the starting point for our theoretical analysis of possible emergence of syn-
chronized neocortical neuronal firing, where we start from the model that
complex behavior, as observed in natural neural firing, is generated from such
periodic behavior, lumped together in time. We address the question of how,
during periods of quasistatic activity, different local centers of such behav-
iors could synchronize, as has been postulated, e.g., by binding theory. It
is shown that for synchronization, methods of self-organization are insuffi-
cient: additional structure is needed. As a candidate for this task, thalamic
input into layer IV is proposed, which, due to the layer’s recurrent architec-
ture, may trigger macroscopically synchronized bursting among intrinsically
non-bursting neurons, leading in this way to a robust neocortical synchro-
nization paradigm. This collective behavior in layer IV is hyperchaotic and
corresponds well with the characterizations obtained from in vivo time series
measurements of cortical response to visual stimuli.

1 Introduction

In mankind’s struggle to understand its own intellectual capacity, one question has
attracted particular attention. It is the puzzle of how the human cortex can be
so variable and efficient, in cognitive tasks and in storage, although the cycle time
of cortical computation – if a spike is taken as the basic unit of clock time – is
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of the order of ten milliseconds, a time that is far slower than what is currently
(easily) achieved by computers. This observation leads to the expectation that
there may be hidden, still undiscovered, computational principles within the cortex
that, if combined with the speed of modern computers, could lead to a jump in
the computational power of artificial computation, from the hardware and software
point of view. In the explanation of the computational properties of the human
brain, an important issue of current interest is the feature-binding problem, which
relates to the cortical task of associating one single object with its different features
[1–2]. As a solution to this problem – in opposition to the concept of so-called
grandmother cells – synchronization among neuron firing has been proposed.

In order to address what ingredients are needed to obtain synchronized en-
sembles of firing neurons, we proceed as follows: first, we investigate networks of
neocortical circuits of pyramidal neurons, that are endowed with excitatory and
inhibitory connections, where we restrict ourselves to quasistatic dynamical condi-
tions. Under these conditions, we obtain a picture of insulated sites that mostly
are engaged in locked states, which may be expressing computational results [3].
It has been shown that recurrent connections on these computational circuits can
be interpreted as controllers of the periodicity of the locking. In other words, they
modify the computational results returned by the circuit [4]. The natural step then
is to add second order perturbations among these sites. For this refined case, we
find strong indications that self-organized synchronization, needed to support the
binding by synchronization hypothesis, is virtually impossible. However, when we
turn our attention to layer IV, the picture changes. As is known, this layer’s task
is more centered on amplification and coordination, than on computation. When
we perform biophysically detailed simulations of this layer (measurements compa-
rable to those made for the previous layers are difficult to obtain), we find a strong
tendency to generate synchronized activity among the participating neurons. As
a conclusion, we find that synchronization in neocortical networks – if present at
all – will have its origin in layer IV, since synchronization cannot emerge in a self-
organized way from the pyramidal neuron circuits alone.

2 Absence of Self-Organized Synchronization

To prove that self-organized synchronization is virtually impossible, we approxi-
mate the cortical network by weakly coupled centers, consisting of more strongly
coupled neurons. In the latter, we focus on binary interaction, although the ex-
tension to n-ary interaction, or even to interaction among synchronized ensembles,
is straightforward. The description of this interaction is by means of maps of the
circle

f : φi+1 = φi + Ω− T (φi)/T0 (modulo 1) . (1)

This formula describes the response of a previously regularly spiking neuron upon
a perturbation by a (in the biological sense strongly connected) neuron (note, how-
ever, that in the mathematical literature, this type of interaction is mostly re-
ferred to as weak interaction of oscillators [5]). In this formula, Ω is the ratio of
the self-oscillation frequency over the perturbation frequency, and T (φi)/T0 mea-
sures the lengthening/shortening of the unperturbed interspike interval due to the
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perturbation, as a function of the phase at which the perturbation arrives. Both
quantities can be measured in experiments; this is how we base our derivation upon
experimental data. From experiments of increased perturbation strengths, we found
that the effect of increased perturbation strength can be parametrized as

g(φ,K) := T (φi,K)/T0 = (T (φi,K0)/T0 − 1)K + 1 , (2)

where K0 is a normalization, chosen such that at K = 1, 75% of the maximal exper-
imentally applicable perturbation strength is obtained. The perturbation response
experiments are performed for excitatory, as well as for inhibitory, perturbations.
The first experimental finding is that, in biology, chaotic response may be attained
from pair interaction, but only if the interaction is of inhibitory nature [6]. This is
essentially a consequence of the greater efficacy of inhibitory synapses, a fact that
is well known in physiology. Note also that the biology-motivated normalization we
are using differs from the usual mathematical one, which sets the value K = 1 as
the critical value of the map, i.e., when the map f loses invertibility. The second
finding is that, as is predicted by the theory of interacting limit cycles, locking into
periodic states is abundant, and that the measure of a quasiperiodic firing relation
between the neurons quickly vanishes as a function of the perturbation strength K.
A last finding is that when going from the static to the quasistatic case, lockings
into subsequent periodicities are observed, exactly of the type that is predicted
by the associated Farey-tree. In fact, our results can be interpreted as the first
experimental proof of the limit cycle nature of regularly firing cortical neurons.

While, consequently, the activity within the centers of stronger interacting neu-
rons is described by locking on Arnold tongues (see, e.g., [3]), beyond the bi- or
n-ary strong interaction, there is also weaker exchange of activity. This weaker ex-
change can be modeled as diffusive coupling-mediated interaction, among the more
strongly coupled centers. In this way, we arrive at a coupled map lattice model,
which we base on measured binary interaction profiles at physiological conditions
(including all kinds of variability, e.g., interaction, coupling strengths)

φi,j(tn+1) := (1− k2ki,j)fKΩ(φi,j(tn)) +
k2

nn
ki,j

∑
nn

φk,l(tn) , (3)

where φ is the phase of the phase-return map, at the indexed site, and nn again
denotes the cardinality of the set of all next-neighbors of site i, j. k2 describes
the overall coupling among the site maps. This global coupling strength is locally
modified by realizations ki,j , taken from some distribution, which may or may not
have a first moment (in the first case, k2 can be normalized to be the global average
over the local coupling strengths). In Eq. 3, the first term reflects the degree of
self-determination of the phase at site {i, j}, the second term reflects the influence
by next-neighbor centers, which are again understood in the sense of strongest
interaction.

The corresponding statement of synchronized behavior, as we understand it,
would be observable emergence of non-local structures within the firing behavior
of the neurons in the network. In the case of initially independent behavior, we
may expect that due to the coupling, a simpler macroscopic behavior will be at-
tained, which could be taken as the expression of corresponding perceptional state.
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Extended simulations, however, yield the result that, for biologically reasonable pa-
rameters, the response of the network is, based on this understanding, essentially un-
synchronized, despite the coupling. Extrapolations from simpler models, for which
exact results are available [7], provide us with the explanation why. Generically,
from weakly coupled regular systems, regular behavior can be expected. If only two
systems are coupled, generally a simpler period than the maximum of the involved
periodicities emerges. If, however, more partners are involved, a competition sets
in, and high periodicities most often are the result. Typically, synchronized chaotic
behavior, results from coupling chaotic and regular systems, if the chaotic contri-
bution is strong enough. Otherwise, the response will be regular. When chaotic
systems are coupled, however, synchronized chaotic behavior as well as macroscop-
ically synchronized regular behavior, may be the result (e.g., [7]). For obtaining
fully synchronized networks, the last option is the one to focus on. The evolution
of cyclic eigenstates deserves particular attention, as it shows how novel collective
behavior may emerge.

We performed simulations using 2-d networks, diffusive coupling between 20×20
to 100 × 100 local maps of excitatory/inhibitory interaction. In agreement with
the above expectations, we found no signs of macroscopic, self-organized synchro-
nization, using physiologically motivated variability on the parameters (type of
site maps, excitability expressed by means of K, locally varying diffusive coupling
strength, etc.). To understand this in more detail, we compared it with an ideal-
ized model that should be a better candidate for collective synchronization. This
model is a diffusively coupled model with tent maps as sites. It corresponds to a
situation where all site maps are identical (a situation that also can be implemented
in our numerical simulations). In this comparison, it first may be objected that in
distinction from the maps derived from the experiments, the model is hyperbolic,
which is a non-generic situation. Through simulations, however, it can be shown
that the corresponding model with nonhyperbolic site maps (parabola, e.g.), share
the primary properties of the tent-map model, i.e., the phenomenology is due to the
coupled map model. The advantage of the model of coupled tent maps is that it
can be solved analytically. In our case we want to derive the largest network Lya-
punov exponent [8]. This can be achieved by using the approach of thermodynamic
formalism as follows. First, it must be realized that the coupled map lattice can be
mapped onto a matrix representation of the form:

M(a, k2) =

=




|(1− k2)a| k2
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k2

4
a 0

k2

4
a 0

k2

4
a

k2

4
a |(1− k2)a| k2

4
a 0

k2

4
a . . . 0

k2

4
a 0

...
. . .

...

k2

4
a 0

k2

4
a 0

k2

4
a . . . 0

k2

4
a |(1− k2)a|




,

(4)
where a is the slope of the local tent maps, and k is the diffusive coupling strength.
The thermodynamic formalism formally proceeds by raising the (matrix) entries to
the (inverse) temperature β, and focusing, as the dominating effect, on the largest
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Figure 1 (a) Network Lyapunov exponent λn describing stability of patterns of a net-
work of coupled tent maps, as a function of the (identical) site map slopes a and
coupling k2. Contour lines of distance 0.5 are drawn light, where stable network pat-
terns evolve (λn < 0), bold where unstable patterns evolve; (b) Maximal site-Lyapunov
exponent λmax of a network of locked inhibitory site maps, as a function of the
coupling k2. For the network, the local excitability is K = 0.5 for all sites and Ω is
from the interval [0.8, 0.85]. The behavior of this network closely follows the behavior
predicted by the tent-map model; (c) Cut through the contour plot of (a), slightly above
a = 1.

eigenvalue as a function of the inverse temperature. For large network sizes, the
latter converges towards

µ(β, k) = (|(1− k2)a|)β + (ak2)β . (5)

This expression explicitly shows the contributions to the unstable/stable behav-
ior from the two sources: the coupling (k2) and the local instability at the site
(a). Using this expression of the largest eigenvalue, we obtain the free energy of our
model as F (β) = log((|a(1−k2)|)β +(ak2)β)). From the free energy, the largest net-
work Lyapunov exponent is derived as a function of the diffusive coupling strength
k2 and the slope of the local maps a, according to the formula

λ = − d

dβ
F (β, k2)

∣∣∣∣
β=1

, (6)

which yields the final result

λ(a, k2) =
a(1− k2) log(|a(1− k2)|) + ak2 log(ak2)

a|1− k2|+ ak2
. (7)

Fig. 1a shows a contour plot of λ(a, k2), for identically coupled identical tent
maps, over a range of {a, k2}-values. In Fig. 1c, a cut through this contour plot
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is shown, at parameters that correspond to results of numerical simulations of the
biologically motivated, variable coupled map lattice, displayed in Fig. 1b. The qual-
itative equivalence of the two approaches is easily seen. Numerical simulations of
coupled parabola show furthermore that the behavior is preserved even in the pres-
ence of non-hyperbolicities. As a function of the slope a of the local tent map (which
corresponds to the local excitability K) and of the coupling strength k2, contour
lines indicate the instability of the network patterns. As can be seen, due to the
coupling, even for locally chaotic maps (|a| > 1), stable network patterns may evolve
(often in the form of statistical cycling, see [7]). Upon further increasing the local
instability, finally chaotic network behavior of turbulent characteristics emerges.
The stable patterns, however, are unlikely to correspond to emergent macroscopic
behavior, comparable to synchronized behavior. Therefore, in order to estimate the
potential for synchronization, we need to concentrate on the parameter region where
macroscopic patterns evolve, that is, on the statistical cycling regime. However, the
parameter space that corresponds to this behavior is very small, even in the tent
map model. When we compare the model situation with our simulations from bi-
ologically motivated variable networks, we again observe that the overall picture
provided by the tent map model of identical maps still applies. To show this in a
qualitative manner, we compare the contour plot of the tent map model with the
numerically calculated Lyapunov exponent of the biological network, which shows
the identical qualitative behavior. Based on our insight into the tent-map model be-
havior, we conclude that in the biologically motivated network, a notable degree of
global synchronization would require, at least, all binary inhibitory connections to
be in the chaotic regime of interaction (excitatory connections are unable to reach
this state [3]). Unfortunately, in case of measured neuronal phase return maps,
this possibility only exists for the inhibitory connections. Furthermore, the part of
the phase space on which the maps would need to dwell is rather small (although
of nonzero measure, see [6]). It is then reasonable to expect that for the network
including biological variability, statistical cycling is of vanishing measure, and there-
fore cannot provide a means of synchronizing neuron firing on a macroscopic scale.
To phrase it more formally: this implies that by methods of self-organization, the
network cannot achieve states of macroscopic synchronization. In addition, we also
investigated whether Hebbian [9] learning rules on the weak connections between
centers of stronger coupling could be a remedy for this lack of coherent behavior.
Even when using this additional mechanism, it does not result in macroscopic syn-
chronization.

3 Synchronization via Thalamic Input

Assuming that synchronization – understood as an emergent, not a feed-forward
property – is needed for computational and cognitive tasks, the question remains
as to what this property may result from. In simulations of biophysically detailed
models of layer IV cortical architecture [10], we discovered a strong tendency of this
layer to produce coarse-grained synchronization. This synchronization is based on
intrinsically non-bursting neurons that develop the bursting property, as a conse-
quence of the recurrent network architecture and the feed-forward thalamic input.
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Figure 2 Coarse-grained synchronized activity of layer IV dynamics. Excitatory (upper
trace) and inhibitory (lower trace) neuron firing is superimposed (bottom), from several
neurons.

Detailed numerical simulations yield the result that, in the major part of the accessi-
ble parameter space, collective bursting emerges. That is, all individual neurons are
collectivized, in the sense that, in spite of their individual characteristics, they all
give rise to dynamics of very similar, synchronized on a coarse-grained scale, char-
acteristics (see Fig. 2). In fact, using methods of noise cleaning (noise, in this sense,
is small variations due to the individual neuron characteristics), we find that the
collective behavior can be represented in a four-dimensional model, having a strong
positive, a small positive, a zero and a very strong negative Lyapunov exponent.
This is tantamount saying that the basic behavior of the neuron types involved are
identical and hyperchaotic [11]. The validity of the latter characterization has been
checked by comparing the Lyapunov dimension (dKY ∼ 3.5) with the correlation
dimension (d ∼ 3.5). Moreover, different statistical tests have been performed to
assess that noise-cleaning did not modify the statistical behavior of the system in an
inappropriate way. As a function of the feed-forward input current, we observed an
astonishing ability of the layer IV network to generate well-separated characteristic
interspike interval lengths.
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4 Comparison with in Vivo Data

When we compared the model data with in vivo anesthetized cat measurements (17
time series from 4 neurons of unspecified type from unspecified layers), we found
corresponding behavior. Not only were the measured dimensions in the range pre-
dicted by the model; specific characteristic patterns found in vivo could also be
reproduced by our simulation model. Of particular interest are step-wise struc-
tures found in the log-log-plots used for the evaluation of the dimensions (see
Fig. 3). These steps have previously erroneously been attributed to low dimen-
sions themselves [12] but can be proven to be related to the firing in terms of
patterns (the remaining results, although obtained on much smaller data bases,
however, agree very well with our findings). These coincidences of modeling and
experimental aspects of visual cortex firing lead us to believe that this ability of
the network, to fire in well-separated characteristic time scales or in whole pat-
terns, is not accidental, but serves to evoke corresponding responses by means of
resonant cortical circuits. Not every neuron, of course, is part of such firing in pat-
terns. In our recent studies of in vivo anesthetized cat data, we found essentially
three different neuron firing behavior classes upon evoked or spontaneous neuron
firing (where the distinction of the stimulation paradigms allowed for no further
discrimination of the classes). The first class shows no patterns in their firing at
all. The second classes’ firing is compatible with the stimulation pattern, whereas
the third’s firing is incompatible. In the unaffected case, long-tail behavior of the
interspike distribution is found. In the compatible case, a clean separation be-
tween patterns and individual firing is found, whereas the characteristics of the last
class are more associated with the mixture of two behaviors. In all cases, how-
ever, the behavior at long interspike interval times is governed by a linear part,
i.e., is long-tail.

5 Control of Chaotic Network Behavior

Chaotic spiking emerges from my model, as well as from the in vivo data that we
compared it with. Moreover, nearly identical characterizations in terms of Lyapunov
exponents, and of fractal dimensions, emerged. The agreement between Kaplan–
Yorke and correlation dimensions [8] corroborates the consistency of the results
obtained.

The question then arises of what functional, possibly computational, relevance
this phenomenon could be associated with? Cortical chaos essentially reflects the
ability of the system to express its internal states (e.g., a result of computation)
by choosing among different interspike intervals (as in the last example above) or,
more generally, among distinct spiking patterns. This mechanism can be viewed in
a broader context. Chaotic dynamics is generated through the interplay of distinct
unstable periodic orbits, where the system follows a particular orbit until, due to
the instability of the orbit, the orbit is lost and the system follows another orbit,
and so on. As it is composed of unstable periodic orbits, chaos therefore is not
amorphous. It is then natural to exploit this wealth of structures hidden within
chaos, especially for technical applications. The task that needs to be solved to do
so is the so-called targeting, and chaos control, problem: The chaotic dynamics first
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Figure 3 Step-like behavior indicating firing in patterns is observed in vivo (picture) and
can be reproduced in biologically detailed simulations of layer IV by the interaction of sev-
eral feed-forward currents to layer IV: (a),(b) from experiments, (c),(d) from corresponding
simulations.

needs to be directed onto a desired orbit, on which it then needs to be stabilized,
until another choice of orbit is submitted. From an information-theoretic point of
view, information content can be associated with the different periodic orbits. This
view is related to recent beliefs that information is essentially contained in pattern
structures. In the case of the particular in vivo measurements discussed above, the
different, well-separated interspike interval lengths, can directly be mapped onto
symbols (of the same number as there are classes of distinguishable interspike inter-
val lengths). A suitable transition matrix then specifies the allowed, and forbidden,
succession of interspike intervals; i.e., this transition matrix provides an approxima-
tion to the (in this particular case: almost trivial) grammar of the natural system.
In the case of collective bursting, it may be more useful to associate information
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Figure 3 (continued).

content with spiking patterns consisting of characteristic successions of spikes. Such
an approach has been shown to be optimally tailored to the description of inter-
mittent systems. In a broader context, the two approaches can be interpreted as
realizations of a statistical mechanics description by means of different types of
ensembles [13–14].

In the case of artificial systems or technical applications, strategies on how to
use chaos to transmit messages, and more general information, are well developed.
One basic principle used is that small perturbations applied to a chaotic trajec-
tory are sufficient to make the system follow a desired symbol sequence, containing
the transmitted message [15]. This control strategy is based upon the property
of chaotic systems known as “sensitive dependence on initial conditions.” Another
approach, which is currently the focus of applications in areas of telecommunica-
tions, is the addition of hard limiters to the system’s evolution [16–18]. This very
simple and robust control mechanism can, due to its simplicity, even be applied to
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Figure 3 (continued).

systems running at Giga-Hertz frequencies. It recently has been shown [18] that
optimal hard limiter control leads to convergence onto periodic orbits in less than
exponential time.

In spite of these insights into the nature of chaos control, which kind of control
measures should be associated with cortical chaos, however, is unclear. In the
collective bursting case of layer IV, one possible biophysical mechanism would be
a small excitatory post-synaptic current. When the membrane of an excitatory
neuron is perturbed at the end of a collective burst with an excitatory pulse, the cell
may fire additional spikes. Alternatively, at this stage inhibitory input may prevent
the appearance of spikes and terminate bursts abruptly. In a similar way, the
spiking of inhibitory neurons also can be controlled. Another possibility is the use
of local recurrent loops to establish delay-feedback control [4]. In fact, such control
loops could be one explanation for the abundantly occurring recurrent connections
among neurons. The relevant parameters in this approach are the time delay of the
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Figure 3 (continued).

re-fed signal, and the synaptic efficacy, where especially the latter seems biologically
well accessible.

In addition to the encoding of information, one also needs read-out mech-
anisms able to decode the signal at the receiver’s side. Thinking in terms of
encoding strategies, as outlined above, this would amount to the implementa-
tion of spike-pattern detection mechanisms. Besides simple straightforward im-
plementations based on decay times, more sophisticated approaches, such as the
recently discovered activity-dependent synapses [19–21] seem natural candidates
for this task. Also the interactions of synapses, with varying degrees of short-
term depression and facilitation, could provide the selectivity for certain spike pat-
terns. Yet another possible mechanism is small populations of neurons, where
varying axonal delays, and delays in the propagation time of the synaptic po-
tentials, lead to supra-threshold summation, only for some sequences of input
spike intervals.
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In conclusion, as we have seen, biological systems provide an abundance of
possible information encoding/decoding mechanisms. To explore the contextual
dependence in which these alternative strategies are applied in the neocortex will
require detailed experimental work in the future. We find that the most appeal-
ing explanation of synchronized firing in the cortex originates in layer IV, and is
heavily based on recurrent connections and simultaneous LGN feed-forward input.
We expect that firing in patterns, in this layer, is able to trigger specific resonant
circuits in other layers, where then the actual computation is done (which we pro-
pose to be based on the symbol set of an infinity of locked states [22]). In future
investigations we will focus on the mathematical properties of the interaction be-
tween the two types of networks, and on the relationship of this two-fold structure
with the computational task the brain performs. One thing that is easy to predict
is that, as a by-product of the network structure, long-range network interactions
should emerge. The majority of the interspike interval distributions from in vivo
cat visual cortex neurons and simple statistical models of neuron interaction, where
the emergent long-tail behavior can be traced back to the influence of the inhibitory
inputs, support this claim [23]. Long-tail interspike interval distributions are in full
contrast to the current assumption of a Poissonian behavior that originates from
the assumption of random spike coding. Our conclusion here is that in the cases
that can be approximated by Poissonian spike trains, layer IV explicitly shuts down
the long-range interactions via inhibitory connections or by pumping energy into
new temporal scales that no longer sustain the ongoing activity.
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