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Digital circuits such as the ¯ip-¯op use feedback to achieve multi-
stability and nonlinearity to restore signals to logical levels, for
example 0 and 1. Analogue feedback circuits are generally
designed to operate linearly, so that signals are over a range,
and the response is unique. By contrast, the response of cortical
circuits to sensory stimulation can be both multistable and
graded1±4. We propose that the neocortex combines digital selec-
tion of an active set of neurons with analogue response by
dynamically varying the positive feedback inherent in its recur-
rent connections. Strong positive feedback causes differential
instabilities that drive the selection of a set of active neurons
under the constraints embedded in the synaptic weights. Once
selected, the active neurons generate weaker, stable feedback that
provides analogue ampli®cation of the input. Here we present our

model of cortical processing as an electronic circuit that emulates
this hybrid operation, and so is able to perform computations that
are similar to stimulus selection, gain modulation and spatio-
temporal pattern generation in the neocortex.

The multistability of digital circuits and the linear ampli®cation
achieved in analogue circuits are generally seen as incompatible
functions and are separated into two classes of electronic technol-
ogy. However, the neuronal circuits of the neocortex do not respect
this distinction. There, multistability coexists with analogue
response. For example, when a visual stimulus is attended at the
expense of other visual stimuliÐthe subject is concentrating on one
object in a ®eld of visionÐthen many cortical neurons tend to
respond in a graded way to the sensory attributes of the attended
stimulus, as if it were presented alone2.

We have designed a simple electronic circuit that emulates this
hybrid behaviour. The circuit comprises a ring of 16 excitatory
neurons, each of which makes synaptic connections of variable
strength onto itself and onto its nearest and next nearest neigh-
bours. These localized excitatory interactions re¯ect the preference
for local connections observed in neocortex. At the centre of the ring
is a single inhibitory neuron that receives synaptic input from all the
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excitatory neurons, and returns inhibition to them. This simple
architecture and similar variants have been used previously to
model response properties of neurons in cortex5±9 and other10±12

brain areas.
The output of each excitatory neuron is an electrical current that

is positive if the neuron is active, and zero if it is inactive. Negative
values are not possible, because the arti®cial neurons are based on
current mirrors, which have a recti®cation nonlinearity (Fig. 1b,
recti®cation).

Each excitatory neuron can be stimulated independently by an
electrical current. The response of the population to stimulation of a
single neuron is shown in Fig. 2a (red line). The response pro®le is
centred on the stimulus and extends over a large fraction of the ring.
In this way, the output currents of the circuit form a distributed
representation of stimulus location. In many brain areas8, such
distributed representations have been observed and been referred to
as population codes13,14. In our circuit, the population code arises by
recurrent excitation, which causes spreading of activity in both
directions, until it is cut off by recurrent inhibition. Beyond this cut-
off, the excitation is not strong enough to overcome the threshold
for activation set by inhibition.

To generate Fig. 2a, the stimulus was ®xed, and the responses of all
the neurons were measured. A similar graph is obtained if the
response of a particular neuron is plotted as a function of the
location of the stimulus, which is the traditional procedure used by
electrophysiologists to map a receptive ®eld or the tuning curve of a
cell. Neurons can maintain their tuning to a sensory variable, such as
stimulus orientation or retinal location, but respond with an amplitude
that is modulated by another variable, such as eye position or
attention. Our circuit exhibits this remarkable phenomenon, called
gain modulation, when a uniform background excitation is applied
in addition to the ®xed localized stimulus.

When we changed the amplitude of the background, the popula-
tion response remained at the same location with much the same
shape in Fig. 2a, but with an amplitude that varied with background
amplitude in an approximately linear way (Fig. 2b). Thus, the
background modulated the amplitude of the tuning curve of each
neuron. For comparison, an example of gain modulation observed
in posterior parietal cortex15 is shown in Fig. 2c. The tuning curve
indicates that the neuron is selective for the location of a visual
stimulus in retinotopic coordinates, while the amplitude of
response linearly encodes the position of the eyes. In a previous
model of gain modulation, it was assumed that excitatorily coupled
neurons in parietal cortex share the same efference copy of eye
position, which amounts to a uniform background input7.

Whereas the foreground stimulus and the background cooperate
to determine the response of the circuit in Fig. 2, two localized
stimuli compete to determine the response in Fig. 3. The circuit
selects one of the stimuli while completely suppressing its response
to the other (Fig. 3a, b). When the amplitudes of the two stimuli
are suf®ciently different from each other, the circuit always selects
the larger stimulus. This property is evident in the hysteresis curve
(Fig. 3c), which has a single branch at the extremes. By contrast,
when the stimuli have roughly equal amplitudes, the circuit may
select either one stimulus or the other. In this bistable regime, once a
choice has been made, the circuit maintains its past selection and is
insensitive to small changes in relative amplitudes of the stimuli.
Bistability enables the neurons to maintain a memory of the past,
but in spite of bistability, the neural ®ring rates remain continuously
graded. For example, if the amplitudes of the stimuli are rescaled by
the same factor, then the response amplitude is similarly rescaled.
On the other hand, in Fig. 3d, when the stimuli marked by asterisks
are moved closer to each other, then the circuit tends to interpolate
between them rather than to select one of them. The network
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interprets two nearby stimuli as a corrupted version of a single
intermediate one, and restores its output towards the choice.

In trying to understand the analogue±digital nature of our
speci®c circuit design, we have developed a general theory of
recurrent networks with recti®cation nonlinearity and symmetric
interactions. The starting point is a basic observation about the
strength of feedback. Even if all synaptic strengths are kept ®xed, the
effective strength of feedback is variable. This property arises
because the neurons of the network can be partitioned into two
disjoint sets: those that are above threshold and active, and those
that are below threshold and inactive. The effective strength of

feedback depends only on the synaptic connections between active
neurons, as only they participate in feedback loops. Depending on
this effective strength, each active set can be classi®ed as either
`forbidden' or `permitted'. Forbidden sets are those for which
feedback is strong enough to induce instability. A forbidden set
cannot be realized by a stable steady state, no matter what external
input is applied. In contrast, permitted sets are those for which
feedback is weak enough that there are no instabilities. They can be
realized by a stable steady state, given the proper pattern of external
input. The fact that the stability of a steady state depends only on the
identities of active neurons, and not on their analogue responses, is

Box 1
Theory of symmetric networks with recti®cation

In general, our current-mode design techniques can be used to
implement electronic circuits that are approximately described by the
dynamical equations

ti�xi�
dxi

dt
� xi � bi �

ĵ

Wijxj

" #
�

�1�

Here the variables x � �xi� $ 0 denote the output currents of neurons and
b � �bi� their input currents. The strength of the synaptic connection from
the jth to the ith neuron is denoted by Wij and �x�� � max�0; x� is a
recti®cation nonlinearity. The time scales ti�xi� ~ �xi�

2 1 are inversely
proportional to the xi, which is a basic property of current-mode circuits.
For the proofs of the results to follow, see Supplementary Information.

Effective gain at steady state
We assume that the inputs b are constant in time, and analyse the steady
states xÅ i de®ned by dxi

dt
� 0. In such steady states, digital selection and

analogue ampli®cation can be separated from each other by using binary
variables ji taking the values 1 or 0, depending on whether the ith neuron
is active ( Åxi . 0) or inactive ( Åxi � 0).

Åx � Gb; where G � � I 2 SWS�2 1S �2�

is called the effective gain matrix25. I denotes the identity matrix and
S � diag�j1;¼; jN� is a matrix that carries `digital' information about
which neurons are active (ji � 1 if neuron i is active and zero otherwise).
The effective gain G depends on the identities of the active neurons,
though it is independent of their analogue responses. It is composed of
two factors. One factor � I 2 SWS�2 1 quanti®es the feedback ampli®cation
mediated by the synaptic connections between active neurons (the
expression SWS is like W, except that the strengths of all synapses
involving inactive neurons are zeroed out). The other factor, S, signi®es
that only the inputs to active neurons are ampli®ed.

Global stability if no unstable common mode
Do the dynamics in equation (1) always converge to a steady state? In the
case of some symmetric networks (Wij � Wji), the answer is yes. Global
stability can be proven if SWS has no unstable common modes for any S,
where a common mode is an eigenvector whose components all have the
same sign and instability means that the corresponding eigenvalue is
larger than one. Intuitively, unstable common modes lead to runaway
excitation, incompatible with global stability.

On the other hand, a differential mode of SWS is an eigenvector with
both positive and negative components. In contrast to common modes, a
differential mode can be unstable and not cause any harm to the global
stability of a network. The growth of unstable differential modes
necessarily makes some neurons hit recti®cation nonlinearity. As we will
see, this turns out to be bene®cial for stability.

Local stability is independent of analogue response values
The local stability of steady states can be determined by linearizing the
dynamics about xÅ ,

dx

dt
� 2 D� Åx�2 1

� I 2 SWS��x 2 Åx� �3�

where D� Åx� � diagt1� Åx1�;¼; tN� ÅxN��. Using the assumption of a sym-
metric W, local stability follows if the largest eigenvalue of SWS is bounded
above by unity (it can be proven that the factor D(xÅ )-1 does not matter).
This means that the stability of a steady state depends on the set of active
neurons, but does not depend on their analogue responses. In practice,
only stable steady states can be observed in a network, because even
in®nitesimal amounts of noise cause divergence from an unstable steady
state. However, differential instabilities are essential for digital constraints
on selection, because they are necessary for the existence of forbidden
sets.

The grouping into permitted and forbidden sets
If the largest eigenvalue of SWS is greater than unity for some set of active
neurons de®ned by S, we refer to that set as a `forbidden set'. On the other
hand, if the largest eigenvalue is bounded above by unity, the active set is
`permitted'. It can be shown that for every permitted set, there exists a
stimulus vector b that produces a stable steady state response consistent
with that set.

Our main result is that in a symmetric network, any subset of a
permitted set is permitted and any superset of a forbidden set is forbidden.
Proof: this grouping follows from the fact that the largest eigenvalue of
SWS is always smaller than that of W. The largest eigenvalue of W can be
characterized by using the Rayleigh±Ritz quotient26:

lmax � maxv

vTWv

vTv
�4�

Similarly, the largest eigenvalue of SWS is given by maximizing the same
expression, but constraining vi � 0 for the inactive neurons. As imposing
more constraints cannot increase the maximum, it follows that inactivating
a neuron cannot increase the strength of positive feedback and therefore
cannot enhance instability. Intuitively, both mutual excitation and mutual
inhibition constitute positive feedback and so explain this hierarchical
grouping of permitted sets.

For the mathematical model of our circuit with the parameters given in
the Methods section, any active set consisting of more than ®ve
contiguous neurons is a forbidden set, and so sets a maximal response
width (this result was derived by numerically diagonalizing SWS).

No multistable selection without differential instabilities
The circuit illustrated in Figs 2 and 3 is potentially multistable, in the sense
that there exists at least one input vector b allowing for more than a single
stable steady state. In general, the existence of differential instabilities is
necessary and suf®cient for potential multistability. This can be proven
using Lyapunov function arguments. Intuitively, multistability occurs when
there is more than one local minimum of the Lyapunov function. In this
situation, saddles exist between the multiple minima, indicating that there
are unstable differential modes.
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a speci®c consequence of recti®cation nonlinearity (Box 1).
In the course of converging to a steady state, the dynamics of a

network of N neurons must select one of the 2N possible active sets.
The existence of forbidden sets gives the selection process a digital
character, meaning that the active sets at steady state obey hard
constraints. Most importantly, the constraints cannot be violated,
no matter what the external input may be. In general, varying the
recurrent synaptic strengths of a network causes these constraints to
change. In particular, if synaptic feedback is weak, then there may be
no forbidden sets at all. Similarly, networks with different patterns
of synaptic connectivity generally implement different constraints.
However, this ¯exibility has its limits, as the constraints cannot take
an arbitrary form. It can be shown that any subset of a permitted set
is permitted, and any superset of a forbidden set is forbidden (Box 1).

Given that the network dynamics has selected a permitted set, the
analogue outputs of the active neurons are related to their inputs by
an effective gain matrix, which quanti®es the ampli®cation or
attenuation produced by the feedback connections between the
active neurons. As explained earlier, inactive neurons and their
synaptic connections are irrelevant. The effective gain depends on
the identities of the active neurons only, though it does not depend
on their analogue responses. The result is that steady states with the
same active set behave like the responses of a linear system, but
nonlinearities emerge when different active sets are compared with
each other.

This general theory is applicable to our circuit in Figs 2 and 3,
where there is approximate symmetry of the synaptic interactions
(in the case of nonsymmetric interactions, the theory does not apply
because there can be spontaneous generation of spatiotemporal
activity patterns; see Supplementary Information). Due to local
cooperation and lateral competition, the number of contiguous
neurons in a permitted set is limited and so activity pro®les cannot
exceed a maximal width. This does not mean that there is a similar
constraint that prevents the narrowing of an activity pro®le.
Narrowing can be achieved, for example, by applying a feedforward
input i (Fig. 1) to the inhibitory neuron. This property follows from
our earlier statement that every subset of a permitted set is also a
permitted set and is the reason why the response does not broaden
in Fig. 2, even when the input becomes almost completely
uniform5,7,16. Intuitively, a uniform, nonspeci®c input transiently
excites the most unstable mode in any symmetric network and so is
a computational means of enforcing selection of a permitted set
comprising many active neurons. The suppression of the response
to one stimulus in Fig. 3a and b can also be understood as the
outcome of constrained selection. Constraints also cause the circuit
to interpret two nearby stimuli as a corrupted version of a single,
intermediate stimulus (Fig. 3d).

The constraints that de®ne the maximal response width to
stimulation can be made more or less restricted by changing the
synaptic strengths. For example, if the strengths of lateral excitation
are adjusted to zero, leaving only self-excitation, then the only
permitted sets are those with a single neuron active, so that the
circuit functions in a winner-take-all mode17±19.

The concept of effective gain is useful for understanding the
analogue behaviours observed in Figs 2 and 3. In Fig. 2a, the set of
active neurons remains basically the same for all stimuli, so that the
effective gain is constant, explaining the linearity of Fig. 2b. By
contrast, the active sets are completely different in Fig. 3a and b, and
so are the effective gains, which explains why the response is so
nonlinear.

The multistability shown in Fig. 3 is reminiscent of the ¯ip-¯op, a
digital feedback circuit consisting of two elements interacting by
mutual inhibition. The feedback creates differential instability,
which drives the voltages of the two elements to opposite limits of
the power supply. This is why the ¯ip-¯op is constrained to two
possible states, and is bistable. Similarly, in our general theory of
recurrent networks, the existence of differential instabilities is

necessary for constrained selection, and the possibility of multi-
stability (Box 1). But these networks differ from the ¯ip-¯op, in that
growth of instabilities is limited by threshold nonlinearity alone. No
saturation or upper limit on activity is necessary to hold instabilities
in check. That is why digital selection can coexist with analogue
response.

Our theory of recurrent networks is related to, but distinct from,
the paradigm of computation with dynamical attractors20,27.
According to the attractor model, memories are stored as stable
®xed points, or dynamical attractors of a recurrent neural network.
External input serves only to initialize the network dynamics, which
retrieves a stored memory by converging to an attractor. The
attractor model was exciting because it provided a mathematically
precise formulation of the intuitive idea that patterns can be latent
in the recurrent connections of a network. Our theory provides a
different formalization of the same intuitive idea. The permitted sets
can be regarded as binary patterns stored in the recurrent connec-
tions. The identities of active neurons are determined by retrieving
one of these stored memories. However, this retrieval does not ®x
the analogue responses of the active neurons. These arise from
feedback ampli®cation and attenuation of the maintained external
input.

In our circuit, the permitted sets are simply groups of neighbour-
ing neurons. However, permitted sets can take more complex forms
in circuits with more sophisticated synaptic connectivity. For
example, we can imagine a computational role for permitted sets
in a network for visual recognition of letters of the alphabet. This
network would contain neurons that represent the strokes of which
letters are composed. Then co-activation of the neurons in a
permitted set would represent a letter as a combination of strokes.
Other combinations that do not correspond to letters would be
forbidden by the recurrent connections. More generally, in parts-
based representations of objects21, forbidden sets could impose
`syntactic' constraints on the way that parts are combined to form
a whole. But analogue variability is also an important property of
perceptual stimuli. Changes in viewpoint, lighting, and other
factors can cause continuous variations in the image of an object.
As both analogue computation and digital constraints coexist in our
circuits, they are potentially well suited for applications to machine
perception and ef®cient hybrid computations22. To build such
circuits, it will be important to devise mechanisms of synaptic
plasticity, so that parts-based representations for perception can be
learned. M

Methods
Our circuit was fabricated using the 2 mm process of the MOSIS facility. Bipolar transistors
were used, as well as MOSFETS (metal oxide semiconductor ®eld effect transistors)
because in weak inversion current mirrors made from bipolar transistors have superior
matching and a larger linear range than those made from MOSFETS. We have used a
current-mode design, which is a suitable technique for implementations of neural
circuits23. In addition to the ring network of Fig. 1, the chip included digital circuitry for
scanning the multiple currents of the excitatory neurons24 out through a single current-
sense ampli®er.

We can derive model equations for the currents Ek of excitatory neurons and I of the
inhibitory neurons (see Fig. 1). By substituting the current±voltage relationship
Ek � I0ekVG =UT of a CMOS (complementary metal-oxide semiconductor) transistor
(k < 0:7 is the gate ef®ciency constant, UT < 25 mV is the thermal voltage and I0 is the
dark current) into I in 2 Ek � C dVG

dt
for the gate voltage VG of the recti®cation mirror (here

VG is referenced to VDD) we obtain the output currents Ek (k � 1;¼;N) of the N � 16
excitatory neurons:

C

Ek

dEk

dt
� Ek � ek � ^

2

l�2 2

alEk�1 2 bI

" #
�

�5�

I � i � ^
N

k�1

Ek �6�

In this derivation, EN�l � El has been de®ned and C . 0 is a constant depending on the
capacitance of the recti®cation mirror. Our measurements indicate that equations (5) and
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(6) are valid for output currents ranging over six orders of magnitude, from 1 nA to tens of
mA of current.

The excitatory neurons interact by self (a0), nearest neighbour (a1 and a-1), and next
nearest neighbour (a2 and a-2) connections. The inhibitory neuron I sums the currents
from the excitatory neurons, and in turn inhibits them with a strength b. The strength al of
each type of excitatory synapse is globally controlled by the emitter voltage Val

, and the
strength b of inhibition is globally controlled by the difference Vbi

2 Vb0
: al � e 2 Val

=UT

and b � e�Vbi
2 Vb0

�=UT (the emitter voltages are references to a variable cell ground).
Similarly, the input currents ek and i to excitatory and inhibitory neurons are exponentially
related to externally controlled voltages Vek

and Vi. A synaptic weight can be turned off by
setting the emitter voltage to about 1V, where it is above the base voltage, under which
conditions current cannot ¯ow across the bipolar.

In excitatory±inhibitory networks, it is known that slow inhibition can lead to
oscillatory or explosive instability. Therefore we sped up inhibition by buffering the
current mirrors of the inhibitory synapses (`buffered output' in Fig. 1c, bf_bias = 3.5 V),
and we slowed down excitation by adding a large capacitance to the current mirror of the
excitatory neurons. In equation (6), the speed of inhibition was approximated as
instantaneous.

We were able to reproduce the measurements shown in Figs 2 and 3 by simulating the
model equations (5) and (6) with parameter values a0 � 0, a2 1 � a1 � 1:15,
a2 2 � a2 � 8 and b � 0:5. The parameters of the model were tuned to match the
response pro®les. Although we tried to minimize the mismatch between different neurons
and synapses by a generous layout in terms of transistor and capacitor size, there are small
inhomogeneities owing to imperfections of the fabrication process.
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Neurogenesis normally only occurs in limited areas of the adult
mammalian brainÐthe hippocampus1, olfactory bulb2±4 and
epithelium5, and at low levels in some regions of macaque
cortex6. Here we show that endogenous neural precursors can
be induced in situ to differentiate into mature neurons, in regions
of adult mammalian neocortex that do not normally undergo any
neurogenesis. This differentiation occurs in a layer- and region-
speci®c manner, and the neurons can re-form appropriate cortico-
thalamic connections. We induced synchronous apoptotic
degeneration7,8 of corticothalamic neurons in layer VI of anterior
cortex of adult mice and examined the fates of dividing cells
within cortex, using markers for DNA replication (5-bromo-
deoxyuridine; BrdU) and progressive neuronal differentiation.
Newly made, BrdU-positive cells expressed NeuN, a mature
neuronal marker, in regions of cortex undergoing targeted
neuronal death and survived for at least 28 weeks. Subsets of
BrdU+ precursors expressed Doublecortin, a protein found
exclusively in migrating neurons9,10, and Hu, an early neuronal
marker11,12. Retrograde labelling from thalamus demonstrated
that BrdU+ neurons can form long-distance corticothalamic
connections. Our results indicate that neuronal replacement
therapies for neurodegenerative disease and CNS injury may be
possible through manipulation of endogenous neural precursors
in situ.

There is precedent for neuronal death modifying the fate of
immature precursor cells, but only in regions of the vertebrate brain
that have ongoing neurogenesis. Direct13±15 and correlative
evidence5,16,17 suggests that neuronal death can trigger increased
neuron addition in these systems. Our previous results show that in
regions of adult mouse neocortex undergoing synchronous
apoptotic degeneration of projection neurons7,8, the surrounding
cells, including interneurons, upregulate the expression of a speci®c
set of developmental signalling molecules that may guide neo-
cortical projection neuron differentiation18. Immature neurons or
multipotent neural precursors that are transplanted into these
regions migrate selectively to layers of cortex where projection
neurons are degenerating7,8,19,20. They then differentiate into projec-
tion neurons7,8,15,19,20, receive afferent synapses7,15,20 and re-form
appropriate long-distance connections to the original contralateral
targets of the degenerating neurons19,20. Similarly, induction of
targeted neuronal death in projection neurons of the song circuitry
in the avian forebrain causes increased neuron replacement from
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