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ABSTRACT

We discuss a generic scenario along which complex spiking behavior evolves in
biologically realistic neural networks. Our nonlinear dynamics approach is based directly on rat
neocortical in vitro recordings. Using this experimental data, we obtain a full overview on the
possible spiking behaviors of pyramidal neurons that are engaged in binary interactions.
Universality arguments imply that the observed spiking behaviors are largely independent from
the specific properties of individual neurons; theoretical arguments and numerical experiments
indicate that they should be observable in in vive neocortical neuron networks.

1. INTRODUCTION

Neocortical circuits are formed of recurrently connected neurons. This is now a
well-established fact, from both anatomical and physiclogical grounds (Douglas er al.,
1996). Cortical neurons are of two basic types, inhibitory and excitatory, and they are
reciprocally coupled in monosynaptic or polysynaptic arcs, Their possible roles have
been the subject of many analyses, both experimentally and theoretically (particularly
in relation to visual receptive field properties). Relatively little attention has been
given to the effect of such recurrent coupling on the global patterns of activity,
although evidence from combined optical and single unit recordings of the primate
visual cortex have indicated that single unit responses occur within quite complex
global patterns of activity, and may vary from rather simple to complex behavior
(Arieli et al., 1996; Wilson and Cowan, 1972; An der Heiden, 1980). Consequently,
the precise nature of this activity and its generating mechanisms remained mainly
unexplained.

Related to this context, suggestions have been made that cortical networks may
become chaotic under specific conditions (Schiff es af., 1994; Mackey and An der
Heiden, 1984; Pasemann, 1993, 1995a,b). However, at what level of description such
a property can rigorously be established, where it originates from and what
implications for the working brain this entails are difficult questions to answer. As a
starting point, we were recently able to demonstrate that when recurrent excitatory-
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inhibitory connections are activated experimentally, individual neurons exhibit both
regular and chaotic firing patterns (Schindler et al., 1997). In these in vitro
experiments, regularly firing cortical neurons exhibit chaotic firing patterns when
inhibitory pulses have a particular frequency relationship to the regularly firing
neuron. The inhibitory input itself need not be chaotic at all; indeed it can be as regular
as clockwork and nevertheless produce a chaotic firing pattern. However, statements
on chaotic behavior obtained by numerical procedures often are of a treacherous
nature. Questions like the iength of transients or abundance of chaotic activity in the
natural parameter space are generally difficult to answer at this level. To establish the
claims on a firm ground, detailed analytical investigations are required.

In previous studies (Schindler et a/., 1997; Bernasconi et af., 1999), we
demonstrated that simple interneuron interactions can be described in a
straightforward way by existing modeling tools (Hines, 1989, 1993). However, the
correct modeling requires detailed knowledge of the values of many parameters, some
of which are difficult to access. Furthermore, the real challenge is in extending such
simple interactions to the scale of cortical networks. In this case, however, the
computation times become exorbitant (Buzséki and Chrobak, 1995; Wang and Rinzel,
1993). Therefore, to obtain more insight into the mechanisms that generate complex
behavior in realistic neocortical networks, we chose an alternative strategy, QOur
approach follows methods of nonlinear dynamics established by Glass and Mackey
(Glass er al, 1984; Glass and Mackey, 1988) for cardiac cells, The advantage of this
method is that it can be based directly upon experimental data, which drastically
reduces the problem of choice of parameters. In the first part of the paper we give a
description of our in vitro measurements of spiking neocortical rat neurons. These
results are then used for the theoretical analysis of noise-driven biological networks. In
the study, we concentrate on the following questions:

- What are the typical neuron firing patterns that emerge in biologically realistic
neocortical networks, given the most simple stimulation paradigms? How stable and
how abundant are these patterns; how much do they depend on the individual neuron
characteristics?

- To what extent are these stimulation paradigms able to produce complex spiking
behavior? What is the natural parameter-space measure of the expected chaotic
response? Our analysis gives a complete answer to these questions:

- Realistic noise-driven networks self-organize towards complex behavior. This
effect is established mostly through binary nearest-neighbor interaction.

- Inhibitory and excitatory binary interactions among rat neocortical pyramidal
neurons are stable with respect to individual neuron variation. They are well described
by circle-maps. Generated spiking patterns are organized along Arnold tongues which
provide a complete overview of the spiking variability from both the topology and
stability points of view. Numerical experiments and theoretical arguments indicate that
the simple principles governing binary interaction remain valid under more
complicated types of interaction.

- Chaotic activity is shown analytically to exist on a nonzero measure of the
physiologically accessible parameter space and should, therefore, be experimentally
observable.

The questions that we address are similar to the ones that were previously
investigated by Hansel and Sompolinski (1996). These authors simulated hypercolumn
models of the visual cortex to explain the differences between regular in visro firing of
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neurons {in response to a constant current injection) and irregular in vivo response.
They concluded that the irregular firing is the result of synchronized chaos generated
by the deterministic dynamics of local networks. In our alternative approach, we rely
on directly measured data of neocortical neurons and we do not require a specific
network architecture, We observe the same types of phenomena and are led to similar
conclusions. However, our claims on the irregularity of the emerging spiking behavior
are of a conceptually more fundamental and more mathematically precise nature.

2. NOISY NEURONAL INPUT

Consider neuronal input in a network with noise-dominated activity (e.g., in the
absence of strong external stimulations from the sensory inputs). Due to the enormous
number of synaptic contacts, a large number of small-strength synaptic inputs can be
expected to arrive at the neuron (Abeles, 1982). Assuming a Gaussian central limit
theorem behavior of the arriving input, the neuron receives an almost constant inflow
of charge which can be represented by a constant driving current. Based on this
assumption, our theoretical model allows us to establish a connection between realistic
noise-driven in vivo neocortical networks, and in vitro rat neocortical neuron response.
QOur approach is similar to the mathematical idealization of the neuron made in the
cable model (e.g., Hines, 1993), where the random walk aspects, generated by the
random arrival of excitatory and inhibitory input, are neglected. Instead, the spiking
behavior of the neuron is described by a limit cycle solution of the associated
oscillator equations. Strong inhibitory or strong excitatory synaptic inputs correspond
to a perturbation of this sotution.

Ratneocortical pyramidal neurons indeed respond with a regular spiking behavior
to a constant driving current (Abeles, 1982, Reyes and Fetz, 1993a,b). In the absence
of other types of neuronal interaction, in noise-driven networks regularly spiking
neurons would emerge, each one spiking at its own intrinsic frequency. However, self
organization sets in and modifies this picture: Neurons in close proximity are
generally more strongly coupled than more distant ones, and the strength of interaction
generally quickly decreases as a function of the topological neighborhood. Stronger
synaptic input can also be generated by groups of synchronized neurons, or more
generally, if substantial packages of spikes arrive at the neuron within a small time
interval (Reyes and Fetz, 1993a,b). As a result, the formerly noise-driven neurons
develop strong binary interactions that are no longer subject to the central limit
theorem. Below, the binary interaction will be described as unidirectional. This point
of view is consistent with the feed-forward characteristics of in-vivo biological neural
networks. However, it does not prohibit bidirectional interaction; we merely assume
that recurrent loops can be treated as secondary effects. The first question that we will
address is: If a regularly spiking neuron is being perturbed by a neighboring neuron
spiking at a different frequency, what is the form of the perturbed spiking pattern?
Later in this paper, we will extrapolate our results to more complex types of
interaction.

In our experiments with real neurons, slices of rat neocortex were prepared for in
vitro recording. Following standard techniques, individual pyramidal neurons in layer
5 of barrel cortex were intracellularly recorded with sharp electrodes. To induce
regular firing, a constant current was injected into the neurons (Reyes and Fetz,
1993a,b). The regular firing neuron was periodically perturbed by the extracellular
stimulation of a synaptic input to the nevron. Excitatory perturbations were generated
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by the stimulation of adjacent white or grey matter by means of bipolar electrodes.
Inhibitory perturbations were generated when fast excitatory transmission was blocked
pharmacologically, by application of 1:5 DNQX and APS5, and regular current pulses
were applied to a fibre making a synaptic contact with the target neuron. In the context
of in vivo neural networks, these perturbation paradigms can be regarded as the
representation of synaptic inputs from strong synaptic connections (see, e.g., Reves
and Fetz, 1993a,b). For more details of the experimental set-up, preparation and
recording see Schindler ef ai. (1997) and Schindler e al. (2000).

In Figure 1a we show a spike train F(#) measured in this experiment. The first two
spikes exhibit regular spiking behavior. The next two spikes show the response of the
regularly spiking neuron, to strong perturbation represented by the strong downward
deflection of the membrane potential ¥, In Figure lb, the same spike train is shown as
embedded data {V;, ¥}, where V;= V (t=1) and V., = V (r=5+ 1) are the
membrane potentials after an evolution of the system over time 7 (7 is called the delfay
time, c.f. Peinke er al., 1992). In Figure 1c we give a diagrammatic analysis of the
embedded data. We isolate three regions of different dynamical behavior: a) channel
motion with the fluctuations appearing in a random-like fashion (1,3,7); b) spike
events (2); ¢) synaptic perturbations (4,5,6). In Figure 1d we show the channel motion
at high magnification: In a random-walk manner the membrane potential is pushed
towards the spiking threshold (this random-walk aspect is thoroughly discussed in a
future contribution).

As is indicated by Figure 1a, the neurons show a nontrivial perturbation response.
At a fixed perturbation strength, the spiking behavior depends in a nonlinear way on

1

the phase ¢ = iTO— at which the perturbation is applied (which indicates a strongly

inhomogeneous random walk towards spiking threshold). This property is revealed by
the phase response function g(¢). This function returns the ratio between the length of
the perturbed interspike interval 7= 7{¢) and the length of the unperturbed interval T;:

2(f) = %?) In Figures 2a and 2b, dots show the measured perturbation response for

inhibitory and for excitatory input, respectively. The phase response curves g(¢) (solid
lines), are obtained by fits to this data set (we chose the simplest C'-function for
inhibition, while for excitation we found a piecewise linear approximation to be
sufficient). Figure 2 shows two individual neuron responses, out from a collection of
200 cells that were experimentally investigated. In Figure 2a, missing data on the
descending part of the curve at large phases might question the appropriateness of the
fit. To obtain the behavior in this part, other cell responses have been taken into
account. In other words, the two responses shown have been chosen as the
characteristic results from the whole set of experimental data. In particular, it is a safe
observation that the phase response curves are continuous, a result which is also
corroborated by continued perturbation experiments (see below)., Reyes and Fetz
(1993a,b) described similar experiments. They measured a function that is closely
related to our phase response function and obtained consistent results, In fact, our
work can be seen as an extension of their approach. For the remainder of the paper, the
two phase response curves shown in Figure 2 will be used in a paradigmatic way;
deviations from these prototypical forms will be discussed in Section 3.

To obtain a more detailed description of the perturbed spiking behavior, we used
the nonlinear dynamics approach originally proposed by Glass and Mackey (Glass et
al., 1984; Glass and Mackey, 1988).
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This approach is based directly on the measured phase response function g(¢).
According to Figure la, for two successive perturbations we have:

T+hL=u+T; (1)
where T is the perturbation period (i.e., the time between successive perturbations),
T=T¢¢) is the perturbed cycle length, #; is the time after spiking at which the
perturbation was applied, and #£ is the time after a spike event when the next

perturbation arrives. To express this relation in terms of phases relative to the
unperturbed cycle length Ty, we divide the equation by To. This leads to the equation

$ =+ - (), mod (1) (2}
where Q2 = Ts/ Ty is the phase shift between the periodic limit cycle and the periodic
perturbation and g(¢) = T—g’l, in accordance with the definition given above. Using for

the unit interval the notation /: = [0,1], Equation 2 can be seen as defining a map on
the circle (Cornfeld er ai., 1982)

ﬁ)(¢1) = ¢’Z, where ¢]: ¢2 € ]’ (3)
which will be called the phase return map. Geometrically, f: 7 — [ should be
interpreted as a Poincaré return map (e.g., Peinke er ¢/., 1992). While in the usual
Poincaré section approach, the location of the next intersection is of interest, here we
focus on the time needed to reach the section, which is equivalent to the interspike
interval length. It is worth emphasizing that in order to derive the phase response
function, it is enough to consider single, isolated perturbations. Iteration (c.f. Section
6) of fn, allows predictions to be made about the spiking behavior when the
perturbation is repeatedly applied (=continued perturbations), provided that the
stability of the limit cycles is strong enough (see Section 4),

(a)

(b}

1.8

Figure 2. Response of a regularly spiking neuron to synaptic perturbation characterized by the
phase response function g(@® (Equation 2). The function measures how a perturbation delivered
at phase ¢ modifies the length of the interspike interval. The dots represent the measured data
from a neuron in the experiment of Figure 1: the solid lines show the associated interpolating
functions. a} inhibitory; b) excitatory synaptic input. Note that inhibitory connections for early
phases may yield an excitatory effect. Both experiments were performed at perturbation
strengths that correspond to K ~ 1 (see Equation 4).
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From numerical experiments with phase return maps it is immediately evident that
the response of a regularly spiking neuron when subjected to regular perturbation,
need not be regular, To make this observation more precise, we consider the set of
phases {¢} that is generated by the iteration of map fi;. Regular spiking behavior is
expressed by a finite cardinality p of this set. In this case, p is the periodicity of the
spiking. However, p can also be infinite. Below we will investigate the dependence of
p on the stimulus type (inhibition/excitation), on the stimulus strength K, and on the
quality of the fit. We will also consider the influence of noise. In this way we obtain a
complete overview on the spiking behavior of noise-driven neurons under binary
interaction. Moreover, our description also provides a quantitative measure for the
occurrence of the different spiking patterns.

3. COMPLEX BEHAVIOR OF THE NOISE-DRIVEN NETWORK:
REGULARITY, STABILITY AND BIFURCATIONS

Displaying sets of iteratively generated phases as a function of 2 amounts to the
generation of bifurcation diagrams (e.g., Argyris et al., 1995). In Figure 3, phases
{8(Q), =1,..,n} are plotted as dots in the vertical direction, for a set of equidistant
values of the phase-shift {2, where n = 64. At first view, the bifurcation diagrams seem
to fall into two classes, depending on whether the phase response functions represent
inhibitory or excitatory stimulation. Nevertheless, both bifurcation diagrams are
typical for the circle-map universality class {Argyris ef al., 1995, and our Section 5).
In Figure 4, the periodicities p = card{@(£2), i=1,..,n} of the generated set of phases
are shown as a function of £2, at fixed stimulation strengths. As can be seen, in both
cases the identical ordering of the periodicities emerges: In the horizontal direction,

between an interval of period g (of winding number %) and a period p (of winding
number %) always a peried ¢ +¢ (of winding number z%g) is found, In Figure 4a,

the largest intervals correspond to periodicity 1 and the winding numbers % and %

respectively. Between the two, an interval corresponding to periodicity 2 and winding
number % is found, and so on. This specific ordering of the periodicities is called the

Farey-ordering {or Farey-tree). It ensures (provided the rule holds) the existence of all
possible periodicities p € N, where N denotes the set of positive integers. Identical
Farey-tree structures emerge for the two types of stimulation. They indicate that the
associated maps both belong to the circle-map class of one-dimensional maps (for
more details see Section 5). In the next step we will point out how the dependence of
the phase response function on the stimulation strength, which is denoted by X, can be
included. We observed that, to reasonable accuracy, the perturbation of g is
proportional to the physical stimulation strength K, for all phases ¢. This dependence
can be written as

gox(9) = gar(@—1) K+1, (4)
where we chose the reference curve gnx. at 75 percent of the maximally
experimentally applicable perturbation strength (above the maximum threshold,
continued perturbations cause irreparable damages to the cells). This functional
dependence is based on a large number of perturbation response experiments using
different stimulation strengths (for more detailed experimental results, see Schindler er
al., 2000). A plot of the emerging periodicities as a function of {Q,K} is shown in
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Figure 5, where colors code the values of p (p € {1, ..., 9, > 10} = {orange, yellow,
green, ..., red}). For each fixed periodicity p, there are different (Arnold) tongues
which comprise areas of the {{2,K} parameter space having stable solutions of
periodicity p. In fact, the Arnold tongunes (e.g., Argyris ef al., 1995) are simply the
extension of the Farey-tree structures of Figure 3 from the Q- to the {Q2,K}-space. For
the different areas, the stability properties of the solutions are of interest. The
Lyapunov exponent

Ao = lim Zlog ! (£5")' (xg) 1, (5)

where £} denotes the n-fold iterate of f, andx, is from the basin of attraction, are a

measure of the stability of the orbits (Stoop and Meier, 1988). Paositive Lyapunov
exponents indicate chaotic behavior, negative exponents indicate stable behavior. Zero
Lyapunov exponents are characteristic for marginal stability {Gaspard and Wang,
1988; Stoop, 1995a; Stoop, 1995b). Zooming into the picture shows that for the case
of inhibitory stimulation, chaotic behavior is possible (Agx > 0), but only for very
strong input signals. Analytic investigations reveal that this occurs on an open set of
nonzero Lebeque measure in the parameter space (see Section 6). In Figure 5, the
parameterization by X (Eq. 4) has been used to extend the perturbation response
beyond the biologically accessible parameter range (i.e., beyond the interval [0,1.33],
see the normalization of X). Comparison of the bifurcation diagrams of inhibition and
of excitation shows that the bifurcation structure for excitation is shifted towards high
K-values. This implies that chaotic excitatory response could occur only at
physiologically not accessible perturbation strengths. In fact, within the biclogically
meaningful parameter space, excitatory stimulations always yield invertible phase
return functions. As non-invertibility is necessary for chaotic response, it follows that
chaos cannot be generated from excitatory binary interaction. Integrate-and-fire
models always yield invertible phase return maps, even when refractory periods are
included. As a consequence, they are inappropriate for describing chaotic neuron
response (Bernasconi ef al., 1999).

How strongly do our results depend on the fits made to obtain the phase response
functions? The appropriate mathematical question requires a formulation in terms of
universality properties of the circle-map class (this class is of a similar spirit to the
better-known Feigenbaum class, c.f. Argyris ef af., 1995). It requires the evaluation of
those variations of the phase response functions that are compatible with the circle-
map c¢lass. If we remain within this class, then the universality principles of the class
imply that all qualitative results remain unchanged, where “qualitative” comprises all
topological properties of the results (e.g., structure of periods), as well as the property
of producing positive or negative Lyapunov exponents, respectively {metric
properties, e.g., widths of Amold tongues, or exact size of Lyapunov exponents, may
differ).

Our detailed analysis in Section 5 shows that the criteria for maps to belong to the
circle-map class are of a surprising generality. The criteria even apply for the rather
distinct phase response functions obtained for inhibition and for excitation (e.g., g(¢)
is not differentiable in the excitatory case). Let us illustrate the strength of this
property with examples. Suppose that in the case of excitatory stimulation, extended
refractory periods are observed, and that this is strongly reflected in the associated
phase response function g{¢) (in fact, this was the case for some of the investigated
neurens). A simple numerical check provides immediate evidence that the
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characteristic properties of our paradigmatic model are still valid. Or suppose that, for
inhibitory stimulation, the experimental data is fitted by a) a polynomial of seventh
order or b) by a piecewise linear map. Again, the results obtained are not only
qualitatively similar to, but even hard to distinguish from Figures 3-5,

The strong universality features of the circle-map class also imply that higher
resolution measurements of phase response functions do not contribute much to the
understanding of the spiking patterns. It is true that a comparison between very
accurate phase response functions from biophysical simulations and from
experimental measurements can determine with a high precision some of the
parameters involved in simulation models that are otherwise difficult to access
(Schindler et af., 1997). For a thorough understanding of the spiking behavior
however, insight into the underlying mathematical principles is required. For that
reason, In the more mathematical sections 5-6 we work out in detail the relevant
theories. We will explicitly show how they can be applied to our experimental data, by
taking into account the specific properties of the excitatory and of the inhibitory phase
response functions, respectively.

a) 1
0.8

0 0.2 O 0.8 I

Figure 3. Bifurcation diagrams generated by £, (Eq. 3), based on the phase response functions
of Figure 2. Arbitrary initial conditions were iterated under f,, and the obtained phases were

plotted using a fine grid for £ {c.f. Eq. 2). For the stimulated neuron, the bifurcation diagrams

seem to fall into two distinct classes, depending on whether the phase response function for
inhibitory stimulation a), or for excitatory stimulation b), is considered (see text).
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12

10 < J L

0.7 Q.76 0.8 0.85 0.9

b)

0 0.2 0.4 0.6 0.8

Q

Figure 4. Periodic behavior of the perturbed neuron, at fixed stimulation strength X, for both
types of stimulation. Shown is the periodicity p of the iterated dynamical map f£,, as a function
of €. Any phase ¢ can be chosen as a starting point for the iteration. Both stimulations yield the

same ordering of the periodicities, only metric properties (size of intervals) differ, a) inhibitory,
b) excitatory case.
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1.4 (a)

Figure 5. Experimental response of regularly synaptically perfurbed regular spiking pyramidal
cells. Results have been derived from Eq. 4 which allows extension beyond the biologically
accessible range [0,1.35]. a), b) overview on the topological response of the neuron under
perturbation, for variable perturbation strength K: So-called Arnold-tongue structures border
the region of a given periodicity p in the {£,K}-space (see text). Colors indicate the value of the
periodicity p € {1,....9, 2 10} = {orange, yellow, green, ..., red} of the asymptotic orbits. a)
inhibitory, b) excitatory case. For optimal resolution, the calculation for inhibition was based on
a piecewise linearization of the phase return map.

¢}, dj stability response of the neuron under perturbation: Lyapunov exponents calculated on
the Arnold tongue structures measure the stability properties of the asymptotic orbits. The
values of the exponent are plotted in the vertical direction. ¢) inhibitory, d) excitatory case. For
inhibition, chaos is possible above K ~ 0.95; this value depends slightly on the form of the map.
Chaos occurs first in small bands leading from smaller to larger K’s, and is then prevalent in the
top peak region of the triangle (calculations based on the function shown in Figure 2a). In the
case of excitation, chaos cannot be reached by realistic values of K.

In experiments of continued perturbation, periods up to 5, sometimes 8, could consistently be

resolved at the correct locations in the { K,€2}-space.
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4. BEYOND NOISY DRIVING AND BINARY NEXT-
NEIGHBORING INTERACTION

The ideal conditions for the observation of the predicted spiking behavior would
be:

a) - no drastic changes in the excitabilities and in the intrinsic firing rates of
neurons;

b) - sufficiently stable limit cycle behavior;

¢) - fast exponential decay of interaction between neurons as a function of the
neighboring order. This should restrict strong neural interaction essentially to
(topological) nearest neighbors.

However, biologically realistic networks are not ideal. Let us consider how critical
these conditions are to realistic networks. We start with condition b). For our
statements on continued perturbations, the essential assumption is that the neuron is
completely reset after firing. This property can be confirmed by comparing model
predictions to experimental results of continued perturbations. In continued
perturbations of the pyramidal neurens we identified periodic spiking behavior up to
period § at the predicted values of € for intermediate stimulation strengths (see
Schindler er af., 2000). Higher periods that have a small basin of attraction are
unresolvable due to the experimental noise. For a few cells, a very weak shortening of
the interval following a perturbed interval was observed. However, this effect was
small and did not accumulate. Our description of neuron firing by stable limit cycles
also implies that the role of the noise should be small. Whereas our experimental
pulse-perturbations showed traces of experimental noise, the nonlinear dynamics
approach is able to describe the noiseless case. To estimate the strength of the
experimental noise, we added Gaussian coloured noise to Eq. 2. We observed a
smearing of the bifurcation structure that was monotonic with the strength of the
added noise. Excellent agreement of the simulations with experimental results was
obtained when the noise level was about 5% of the signal. We also observed that, as a
general rule, single pulse perturbations indicate a significantly higher level of noise
than what is actually observed in continued perturbation experiments, which we
attribute to the very strong stability properties of especially the lowest Arnold tongues
(c.f. Figure 5). In continued perturbations, we found immediare relaxation of the
perturbed system to the asymptotic orbits (usually within one spike), which puts a very
optimistic view on condition a). We, therefore, conclude that our assumption of a
sufficiently stable limit cycle is well justified and that it is not unrealistic to expect
stable neuronal activities on the relevant time-scales.

Condition ¢) seems to be the most critical one. Evidently, cortical interaction is not
restricted to binary type. However, safe mathematical grounds exist to ensure
qualitatively similar characteristics of neuron spiking patterns for ternary and higher
interaction (Baesens er al., 1991). Therefore, only evidence for the required separation
of scales of synaptic input strength remains to be given. For realistic neural networks,
we propose the following separation of synaptic inputs: 1. strong input, caused by the
strongest connected next-neighbor neuron or by a group of synchronized neurons;
2. medium size input of longer periodicity or of chaotic nature, characterizing a
structured environment and transmitted by means of, e.g., interneurons; 3. small-size,
diffuse, decorrelated input, obeying the Gaussian law of large numbers. Expressed in
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terms of the maximally applicable experimental stimulation strength (i.e., 4/3 Ky), we
estimate these inputs to be of the order 107", 107 and 10™ respectively, magnitudes,
which would be consistent with our local approach. Although quantitatively only little
is known about how well these scales separate in biologically realistic neural
networks, there is widely accepted experimental evidence that synchronization and
strong coupling play a major role in the organization of realistic neural networks (e.g.,
Abeles, 1982). To estimate the effects of medium-size perturbations on binary

interactions, we generalized Eq. 4 to
Joxi Pt =Pn +Q”K(8(fpn)—1)+l—123in(mn) (6)

where @, = 0, + ax with fixed axy = 0.1 and E =0.05. In this way, the strength K of
the secondary, deterministic, perturbation was of the order of 10% of the average of XK.
Orbit points were identified if they differed less than 107 The results of this
calculation are shown in Figure 6, where only the top region of the Arnold picture is
displayed. They indicate that our approach should provide a good approximation to
realistic neural networks.

As a first summary, the following behavior of realistic noise-driven cortical
networks is suggested: Locally, low-periodic spiking behavior may be expected in
abundance, by the interaction of otherwise freely spiking neurons. This periodic
response is organized along Arnold tongues and obeys the circle-map class
universality. Consequently, the network is able to respond locally with any desired
periodicity (see Section 5). The presence of noise may restrict stable responses to the
lowest, most stable, periods. While for weak local interaction the local spiking
behavior is dominated by a wealth of different periodicities, for stronger interaction,
there is a tendency for the response to settle towards more simple and more stable
spiking patterns. These regular spiking patterns are in sharp contrast to the chaotic
response which may emerge for strong inhibitory interaction. In Section 5 we will
show that chaotic response exists on a nonzero Lebeque measure of the parameter
space. This means that chaos should be observable and that systems could be tuned to
such states. However, note that chaos requires comparatively strong stimulations and
only ocecupies a small portion of the parameter space. Using the universality principles
of the circle-map class, we are able to prove that our experimental observations do not
depend on artificial preparation, but are “generic” for our set-up.

Also worth noting is that under ideal network conditions, information can only be
efficiently encoded in terms of phases, not firing rates. This invites us to make a
comparison between our results and earlier studies that concentrated on spike-timing
reliability, i.e., on the potential of neuron interactions to generate reliable periedic
spiking. This work has a long tradition. Most of the earlier works concentrated on
Nitella, crayfish stretch receptors and mollusc neurons (for a collection of these early
works see Degn et al. (1987)). Recently, this topic has once again become the subject
of theoretical as well as of experimental interest. As a first step, Yarom (1991) was
able to show that olivary neurons have the ability fo generate sustained oscillations in
neuron populations and that this ability seems to be restricted to a narrow frequency
bandwidth. i.e., they are potential candidates for providing an accurate internal time
reference for spike-time-critical cortical functions, Hayaishi and I[shizuka (1993)
studied rat hippocampal slices in the CA3 region. In their experiments, they were able
to clearly identify chaotic and phase-focked response under a mossy fiber stimulation,
where their slices were heavily chemically prepared in order to serve as a model
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a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 6. Form of the Arnold tongues of Figure 5, when an additional perturbation of more than
10 percent of the binary interaction is included. Note the close correspondence with the results
of Figure 3. On this basis, we conclude that the described neuren response patterns should also
be observed if the neuron pair is embedded into a network. a) inhibitory, b) excitatory case.
Same coloring as in Figure 5.
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for epileptogenesis. Hunter et al (1998) investigated spike-timing reliability in
Aplysia motoneurons, using integrate-and-fire neurons as theoretical models.
Although these models are unable to express important response properties of
pyramidal cells (Bernasconi ef al., 1999), their result that spike timing is reliable in the
presence of noise only for frequency ratios that correspond to the lowest Arnold
tongues, fully agrees with our numerical and theoretical findings. Actually, the
requirement of a well-defined separation of the size of the synaptic input may be seen
as an argument in favor of synaptic synchronization mechanisms. To make the concept
work, the amount of noise should be smaller than the widths of the most relevant
Amold tongues. A similar point of view has recently been theoretically elaborated by
Jensen (1998}, who investigated the synchronization behavior of randomiy forced
oscillators. His finding was that (possibly nonperiodic) synchronization will be
achieved, essentially if the differences of the frequencies do not exceed the width of
the primary Arnold tongues, a result that places our approach on even more solid
grounds.

in a forthcoming work, we also take into account the medium-size inputs, In our
refined approach, a description by a lattice (Bunimovich and Sinai, 1988; Losson and
Mackey, 1994) of binary interactions, on which medium-size input is represented by
diffusive coupling, is appropriate. With this model, we are able to show that on the
network level, the inhibitory connections contribute far more than excitatory
connections to synchronization of the network. We have strong evidence that this
conclusion remains valid far beyond our model. However, our insight into this
interesting topic is entirely based on numerical simulations (there are mathematical
reasons why analytical results cannot be expected).

5. TOPOLOGICAL RETURN-MAP PROPERTIES

The aim of this section and the next section is to provide the reader with a greater
understanding of the nature and the mechanisms of the observed bifurcation structures,
their topology and the stability properties of the associated orbits. While the results of
the next section are entirely new, the aims of the discussion of the present section are
twofold. Here, we present the mathematical theorems responsible for the topological
structure of the neuron response and we also verify their applicability to our
experiments. There is a conceptual difference between a map on the circle and a
circle-map. The former term simply relates to the domain of a map, while the latter
relates to a universality class of maps. In this section, we explicitly prove that our
phase return maps are circle-maps. A very similar statement applies to the numerically
observed chaotic response for inhibition. Although it is true that mode-locking leads
naturally to a competition between different periodicities as the strength of interaction
K increases (c.f. Glass and Mackey, 1988), the outcome of this competition depends
on the properties of the map. To arrive at the statement of experimentally observable
chaotic behavior, a separate discussion is required, which will be given in Section 6
(this situation is comparable with the Feigenbaum case). Beyond the limit of period
doubling, chaos is possible, but may live on a set of measure zero. In this case, chaos
would experimentally not be observable. The question of nonzero measure is not
answered by the topological properties of the universality class alone; specific
properties of the maps are needed for this discussion (see Stoop and Steeb, 1997).

To start the discussion of the topology of the phase return maps f,(¢) (Eq. 2), we
first recall that f,(¢) depends on the nature of the stimulation of the cell (inhibitory
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and excitatory stimulation, respectively). For both cases, saddle-node bifurcations
{Argyris et al., 1995) generate the bifurcation diagram. We now explain how the
circle-map universality class generates the common structure behind the bifurcation
diagrams. Our strategy of analysis is as follows. First, we concentrate on general
features of the phase return maps, valid for both inhibitory and excitatory perturbation.
The results are formulated in Theorem 1 which depends on Properties 1a and 1b, In
these properties, metric aspects of the problem only play a marginal role. Therefore,
the results apply for both stimulation paradigms. In the second part (appearing as
Section 6), we focus on metric properties. In Theorem 2, we derive results on possible
chaotic behavior of the phase return maps. The prerequisite for this theorem (Property
L¢) however, is only satisfied in the case of strong experimental perturbations of the
inhibitory type.

Property 1

a) The phase return map f is differentiable on / with exception of the point of
discontinuity introduced by the modulo-operation in the definition of the phase and
turning points in the linearized case. It has exactly two points x',x" where its derivative
| F' ol equals one. Moreover, | f' o] < 1 on the segment [x".x"] and | f'n| > 1 € I\[x"x"].
In the case of the linearized map, the corresponding points are the turning points.

b} /o is onto 1.

¢) fo is not injective on /.

Remark 1

Note that the (2-dependence only results in a phase-shift. Properties 1a and 1b are
satisfied by all maps that we consider (see Figure 2), in the differentiable nonlinear
and also in the piecewise linear approximation case. Property 1c, which is not fulfilled
by excitation for biological parameters, is needed for the generation of chaotic
behavior. Condition 1b can be relaxed, if necessary.

Theorem 1

Let f, satisfy the Properties 1a and 1b and violate Property Ic. Then the following
holds true:

a) f,, generically has stable periodic orbits of all periods.

b} For every Q, f;, has at most one stable periodic trajectory.

¢) A stable periodic behavior of period p holds on an interval [} of Q-values.

Remark 2

A homeomorphism of a circle may have several stable periodic trajectories (in this
case all of these trajectories must have the same period). However, this would require
that the map has more than two points of derivative one, which is not the case, for both
types of stimulations.
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Proof

(Additional details to our arguments can be found in, e.g., De Melo and Van Sirien,
1993.) For the excitatory case, the phase return map f;, is an orientation-preserving
homeomorphism of the circle into itself, for all reasonable perturbation strengths. The
rotation nmumber is a monotonous function of (2 and for rational rotation numbers we
have stable periodic orbits, that extend over a whole Q-interval. As a consequence, we
obtain the Farey-ordering (Argyris et al, 1995), showing that all possible stable
periodic orbits exist. For irrational retation numbers, we have quasiperiodicity. Since
the map is invertible in the experimentally accessible parameter space, the map is
nonchaotic.

For inhibition, one may verify that the parameter X in Eq. 4 plays a role similar to
the parameter X in the classical circle-map. For small X, the map is noncritical and the
same statements hold as above. Increasing X leads the inhibitory case much faster to
criticality. In this way, chaos can be achieved even for experimentally realistic values
of K. The existence of a single stable solution on the interval is guaranteed as long as
the maps are invertible.

Theorem 1 thus fully explains the topological structure of the observed bifurcation
diagrams. Apart from producing an intricate bifurcation diagram, an important feature
of the map accounting for inhibitory stimulation is its ability to produce chaotic
motion, at appropriately chosen values of €. This feature will be analyzed in detail in
the next section.

6. CHAOS VIA PEAK-CROSSING BIFURCATION

We now explain the mechanism that generates experimentally observable chaotic
behavior. The generating mechanism is interpreted as a variant of the peak-crossing
bifurcation (Bunimovich, 1993; Bunimovich and Ventakagiri, 1997). This strategy
leads us to the statement that in the case of inhibition, the set of Q-values producing
chaotic behavior is of positive Lebeque measure. This means that the chaotic
dynamics are experimentally observable and that the system can be prepared in order
to produce such a behavior. The mechanism leading to chaos for inhibition is as
follows (the strategy for maps of the excitatory type would be entirely different and
simpler). Let 3" (x) = fo(fo(fo--(x).)) denote the n-fold iterated map of f;,. For
inhibition, for all values of €, I has a natural partition into four segments I, I, 5, 1,
whose end points are given by x', x'' in Property 1, and by the point X that yields a
discontinuity of f'as a map of the unit interval into itself (evidently, for excitation we
have three segments [, ,, ;. Upon the identification of the initial and the final points
of 7 — S', 1, and I, collapse into one segment, which shows that from the point of view
of topology, a distinction between the inhibitory and the excitatory cases is
unnecessary at this point). Denote by % the first nontrivial point of discontinuity on
the interval, Depending on the value of £, point ¥ may be situated inside the interval
[x', x'], so that generally we will have three points of discontinuity in the interval

(there is always one exceptional value Q so that Joll) is a continuous map from the
unit circle into itself).

Given a large enough K, a chaotic motion occurs for some values of Q in three
bands of Q. We denote by Q7. Q7 the left and the right endpoints of the Q-interval
associated with a (stable} period n. For the sake of brevity we will only discuss in
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detail the scenario in the band (Q?,Q}). The analogous bifurcation occurs in
(QL,Q%) and in (QE,Q?), where the analysis is even simpler in the latter case. A
typical graph of f, for the case (Q]rQIZ) is shown in Figure 7.

(a) o (b)

{n+1) SUH
f f® fw [
(n)

Figure 7 Relevant graph of f, for inducing on the segment [fg(zn-'-l)(i), fa"'(X)]. The on this

interval induced map is the key tool for our analytical statement that in the case of inhibition,
chaos dwells on set of nonzere Lebeque measure in the parameter space.

Denote by X the unique critical point of £, of the interval ., Let fgg”)(i) be the
first return of the {positively oriented) trajectory of X to 4. Suppose that fg({” (x)>x,
which is possible for values Qe (QE,Q}). Our next proposition is that
(%)< % € I,. Moreover, fy V() < f§"V (%) < fo(%) (see Figure 7). Consider
now the interval [ fé’“’”(i), fa(¥)]. The by g(z") induced map on this interval has the
graph as shown in Figure 8a. We denote the restriction of £ to this interval by fi®.

Observe that for a fixed £ the map f"g (x) is uniquely defined by é”) (x), provided

that the above conditions are satisfied as in our case. The map fg {x) belongs to the

class of unimodal maps of an interval into itself. The properties of such types of maps
are meanwhile completely understood (see Sinai, 1989; Lyubich, 1997). Given this
situation, we arrive at the following statement:

Theorem 2

In each of the intervals (Ql,,QIZ), (Q%,Q?), (Qi,Q}) there exists a subset of a

positive Lebeque measure on which the map f,(x} has a positive Lyapunov
exponent.

Proof
(2a+1)

Suppose first Property 2: Let Q be such that the condition £ (%)= f{*""(%), is
fulfilled, where X is the above-defined critical point in L (c.f. Figure 8b). In this case,
for this @, the theorem is immediately clear. However, it is easy to see that there is
only a countable set of values of £ where this condition can be satisfied.
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Tor the more general case (Figure 8a), fortunately a more sophisticated condition
ensures that the positivity of the Lyapunov exponent holds for a set of positive
measure of values of Q (see for details Lyubich, 1997). This concludes our proof.

Figure 8. Generic and
- special graph of the by

0.8 S ") on the segment

s [fa™" @), £87 (1

e induced map. For the
061 i special graph shown in
,/ Figure 8b, the
P argument for chaos of

04 e Jo on a set of nonzero

- Lebeque measure is
/ straightforward. The
; generic case shown in
0.2 ‘/’ Figure 8a requires a
yd more careful analysis
T (see text).

0.2 0.4 0.6 0.8 1

0|
(2} (n)
[® = [ ®

Q

7. CONCLUSIONS

We have determined the basic principles responsible for periodic and aperiodic
spiking behavior in biological neural networks. We were able to formulate the
topological and metric properties of the emerging spiking behavior in terms of
mathematical existence and uniqueness theorems. In the regime where the neural
network activity is dominated by small-scale noise and binary next-neighboring
neuron interaction, this leads to a simple explanation of experimentally observed
complex spiking behavior of neurons. Moreover, for this case we obtained a
quantitative description of the natural abundance of the different periodic spiking
patterns and we worked out the stability properties that they exhibit. Simulations and
theory show that this quantitative description is valid for binary neuren interaction in a
generic way.

From an information-theoretic point of view, the regularly perturbed neuron's
potential to respond with stable periodic firing of any desired periodicity, is
remarkable. The usual chaos control paradigm for the transmission of information (Ott
et al., 1990) starts from a chaotic ground state and then applies control techniques to
arrive at a desired periodicity. The symbol to be transmitted is then encoded in terms
of this periodicity, similar to the encoding by the ASCII table. In our case, both types
of interaction can perform this task with ease, simply through a variation of the
frequency or the stimulation strength of the sender, or by adjustment of the excitability
of the receiver. In this interpretation, changes in the firing patterns which only affect
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the value of € can be interpreted as rate-coding mechanisms, while changes mainly
into the direction of X can be seen as synchronization effects.

QOur investigations revealed how binary neuron interactions emerge locally within
noisy networks of cortical neurons. We gave numerical evidence that the influence of
medium-size input may be treated as a perturbation of dominant binary neuron
interactions. Our final conclusion is that spiking patterns evoked by binary neural
interaction should also be observable in in vivo activity, as subsystems embedded in
the network activity. We recently successfully applied this approach to understand
unexplained properties of in vivo interspike interval distributions (work unpublished).
We expect similar spiking patterns to emerge from interactions between synchrenized
areas of the neocortex.

On the network level, we are confronted with our recent observation that there are
significant differences between the influences on the network by inhibition and
excitation, although the associated phase return maps belong to the same universality
class of maps. In simulations of a refined model, in which phase coupling was
included to represent medium-size inputs, we found that inhibition enhances
synchronization much more than excitation. The reason for the efficacy of inhibition is
beyond this contribution and will be addressed in the future. We alsc observed that
when the strength of the phase-coupling is increased, the nature of the observed
irregular behavior changes from local chaos to global turbulent behavior. This global
turbulent behavior may correspond to the "synchronized chaos” observed by Hansel
and Sompolinski (1996).

Finally, our insight into periodically perturbed regularly spiking cortical cells
could be important for future hardware implementations of cortical cell response, For
successful implementations, it may be necessary to understand how “real” data can be
processed on top of the complex activity that we have shown to emerge, We need
experiments on real and experimental noise-driven neural networks to understand how
the real data features can be separated from the complex background activity.
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