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ABSTRACT

In recent years, several methods of noise reduction have been de-
vised and applied to chaotic time series. Among them, projec-
tive methods have been particularly effective. We explain the non-
orthogonal projective approach originally suggested by Grassberg-
er et al. from a new point of view. We further discuss the extent to
which a dynamic neighborhood selection improves noise reduction
results.

1. INTRODUCTION

Chaotic signals are often contaminated with noise, which may ei-
ther originate from measurement errors or from secondary parame-
ters, whose influence on the system is small and should be neglect-
ed. The presence of noise limits our ability to extract information
from the system. In particular, the performance of chaotic commu-
nication schemes [1] is reduced if the signal is noisy. Algorithms
that are capable to reduce the noise in time series have therefore
gained increased interest in recent years.

Among these algorithms generally known as “noise cleaning
methods”, local projective schemes have proven very efficient. The
first step in nonlinear noise reduction is the reconstruction of the
higher dimensional dynamics by means of the coordinate delay
method 2] from a time series (:c,‘)ﬁ":y The reconstruction is ob-

tained by- defining m-dimensional vectors x; = (Zi, Zi—7,... "

Ti—(m—1)r) With suitable delays T', which is called the embed-
ding process. The points in the embedding space of dimension m,
give a diffeomorphic representation of the original, unknown, sys-
tem, if m >= 2D + 1, where D is the box-counting dimension
(Whitney’s embedding theorem, [3]).

The common principle of all local projective methods is the
following: Locally, optimal linear approximations to the invari-
ant unstable manifolds of the unperturbed dynamics are evalu-
ated in the embedding spacé, by using locally available noise-
contaminated embedded data. After the local structures are known,
the points are projected on the linear subspaces that locally span
the attractor submanifold. The crucial issue that distinguishes diff-
erent methods is with regard to what criterion the linear approx-
imation is chosen to be optimal. This choice entails unexpect-
ed consequences and results in essentially two different ways of
how the projections are actually performed: orthogonal and non-
orthogonal. In this paper, we first present evidence for the assump-
tion that orthogonal projections may not be optimal. Then we ex-
plain the non-orthogonal projective scheme suggested by Grass-
berger et al. 4] in Sec. 3 from a new, projection, point of view.
Finally, we present results from a modification of the original al-
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gorithm and show that a measurable improvement for moderate
noise levels can be obtained.

2. ORTHOGONAL PROJECTIONS ARE NON-OPTIMAL

The most straightforward approach for the computation of the ap-
proximating subspaces, would naturally be a local SVD (singular
value decomposition) [5]. This scheme is optimal with respect to
minimized least squares deviations in the embedding space and
implies that orthogonal projections are performed. However, re-
cently Schimming and Hasler [6] were able to analytically show
that for piecewise linear one-dimensional maps, orthogonal pro-
jections are not optimal. In their case, they had complete knowl-
edge of the unperturbed dynamics, and they used the minimum
Bayesian variance estimator correction as the relevant criterion.
They showed that the correction can be separated into two contri-
butions: 1) An orthogonal projection to the linear attracting mani-
fold, and 2) a so-called boundary function. This second contribu-
tion is important near turning points of the manifold and leads to
the fact that the projections are non-orthogonal (Fig. 1, points B
and C). Therefore, for non-linear maps, the a-priori assumption of
orthogonal projections must be given up.

Figure 1: Noise reduction by minimum Bayesian variance estima- -
tion on the skew tent-map. Adapted from Schimming and Hasler

[6].

Grassberger’s approach, however, was originally motivated from
another observation. The influence of noise is not equal for all
components of an embedded data point. Consider the coordinate
difference between the point and its next neighbor as the signal that
is to be compared with the noise. Typically, close neighbors will
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have very close central coordinates, while the more peripheral co-
ordinates will be more different (all the points are unstable saddle
points). Therefore, the component with the highest noise-to-signal
ratio is the central one (or the most central ones). As a conse-
quence, noise reduction should concentrate on the central coordi-
nates, while peripheral coordinates should be spared from noise
reduction. Clearly, also applying noise reduction in a coordinate-
specific way makes the associated projections non-orthogonal.

3. OPTIMAL CORRECTIONS BY NON-ORTHOGONAL
PROJECTIONS

The core idea of the non-orthogonal projective approach is to find
local linear subspaces of dimension m — @ to approximate the
unperturbed dynamics. For the algorithm, @ has to be chosen
consistently with the other parameters (see Sec. 4), and the cor-
rections Ax,, are chosen to place the points x|, = x, — Axy, on
the estimated manifolds. This can be achieved by imposing the @
constraints on Axp,

by (W —Ax) =0, ¢=1,.,0Q, )
where W, = x, — % and %™ denotes the center of mass of
a neighborhood Uy, around x,, of optimal size. The main problem
is to choose the parameters and to estimate the vectors b, and
the corrections Ax,, in a self-consistent way. If the vectors b,
were equal to the rows of the Jacobian matrix of the dynamics at
%(™), the corrections would be compatible with the time evolution.
However, since the dynamics of the system is normally not known,
this is generally not the case.

Component-specific corrections may be obtained by a trans-
formation of the problem (1) by a diagonal matrix R (of dimension
m), whose elements will be determined according to the weights
we intend to give to the coordinates,

(zn — Azy) := R(wpn — Axy). )

If matrix R were chosen as the identity matrix I, we would remain
with the previous situation. If R had only zero and unit entries on
the diagonal, R would be a projection. The final choice will be
that of a compromise between the two situations, where we R will
be kept invertible, but where the entries are either large or small,
which makes R act essentially like a projection. In the transformed
space we require, similarly to (1), the fundamental relation

g=1,.,@ 3

where the a,’s are chosen to be orthonormalized. If the directions
a, are known, the corrections Az, are given by the component of
z, lying in the spanned subspace:

aqT - (zn — Azp) =0,

Q
Az, =Zaq(ag‘-zn). (4)
a=1
When the condition (3) in the z-space is expressed in terms of
the x-space, this amounts to
ag ‘R(Wn —A%,) =0, ¢=1,.,Q, )
which with a, =: R™'b, can be written as

R7'b; ‘R(xn —Ax,) =0, ¢=1,.,Q, (6

from which we finally obtain (1). Note, that the vectors b, and
the corrections Ax, now depend on the choice of the matrix R.
If R = I, the set {b, },?=1 would be orthogonal, and, by (4), or-
thogonal corrections are obtained. Generally, however, we obtain
non-orthogonal corrections. For an optimal correction in the z-
space,

> (i a,(ag -24))” = min. ©)
k: Xy, €Un =1
must be solved, under the condition
ag -ag = 8. , ®
The solution of this minimization problem is given by the

eigenvectors of the covariance matrix

Lij = Y. (ze)i(ze)s, ©®

1
|t kixg €U

' with the @ smallest eigenvalues. They identify the directions a,

that satisfy Eq. (3), where the subspace spanned by them coincides
with the nullspace of the operator I" for the unperturbed system.
Using Eq. (4), the corrected points are finally given in terms of the
original vector X, as

Q
x'n =%, -R7! Zaq[aqT - R(wn)]- (10)

g=1

Closer examination of (10) reveals the basic structure of the
optimized noise reduction procedure: First, a linear transform z =
Rx is performed. Then orthogonal projections are performed in
the z-space. The equation

by -Pb, =d,y, (11)

then immediately follows by expressing the orthonormalization
of the set a, in terms of by, where we used P := R™2. It
shows that the set {b, },?:1 is orthonormalized in the metric de-
fined by P rather than in the Euclidean metric, for P # I. Finally,
by multiplication with R™1, the result is transformed back into
the x-space. If the peripheral entries of R are chosen as large
and the central entries as small numbers, R can be inverted and
R~! would approximately project the corrections on the manifold
spanned by the central coordinates in the x-space, as required ear-
lier.

However, since the corrections will generally not be compati-
ble with the time evolution, further iterations of this procedure are
required. The hope is to achieve convergence towards zero correc-
tions by the iterative application of the corrections.

4. OPTIMAL CHOICES OF R AND @

What are the implications imposed on the transformation R? Cer-
tainly, Eq. (11) should be fulfilled. Assuming that the vectors b,
equal the rows of the Jacobian, in view of the normalization con-
dition (11) the role of R. (or, more precisely that of R™!) would
then be to compensate for the action of the Jacobian on the Q coor-
dinates. Unfortunately, we have no access to the Jacobian matrix.
However, we may calculate the set of a,’s, once we have chosen
R and Q. Fortunately, the minimization problem (7) ensures that
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the noise-cleaned trajectory is optimal in the least-squares sense
in the z-space, for every chosen R. To obtain optimally weight-
ed non-orthogonal noise cleaning, R and @), are chosen along the
following rules:

If we intend to suppress d peripheral coordinates of the cor-
rection vector Ax;, where j = 1, .., m indexes the components of
the vector, we choose the corresponding elements R;; very large
in comparison to the central ones. In practice, it is good enough to
choose these elements a factor of 10 — 1000 times larger than the
remaining ones. In view of making projections onto the approxi-
mating local linear subspaces of dimension m — @Q, the number of
constraints () that we can impose is limited: The vector Ax that
establishes the projection is of dimension m, although only m — d
of its components may be changed. If no components are left to be
changed (i.e., d = m), then the projection fails. By the projection,
the Q constraints should be met. This clearly is only possible if at
least 2 components can be changed. Since we may change m — d
components, the relation @ < m — d needs to be satisfied. There-
fore, the relevant conditions for the choice of R and Q are

Q<m-—mo
’ (12
Q S m— dy
where, in order to leave no uncorrected noisy directions, the opti-
mal choice is the largest possible Q:

Q = m — max{mo, d}. (13)

Below we give a practical illustration (see Fig. 2). For given m =
5, we need to estimate mo and set d (which may be estimated
from the correlation dimension, and from the Lyapunov exponents
(compared to the relative size of the entries of R), respectively, if
available). Then @ is determined according to the above relation.
For Hénon’s data, mg = 2,d = 2,and R;; = 1forj = 2,3,4
and R;; = 100, for j = 1,5. Other choices that are compatible
with (12) would be d = 0 (implying orthogonal projections) and
d = 4, that are both non-optimal.

5. TRAJECTORY RECONSTRUCTION

Still under the assumption that the dynamics does not dominate
the noise over d time steps, where d is the number of the to be
corrected coordinates, the different corrections that are obtained
for the same time series elements &, display an approximate ran-
dom distribution. In the non-orthogonal projective algorithm, by
means of R different corrections are applied to the components.
Since the corrections with the largest weights are the most reliable
ones, this should be accounted for when taking the average, and
weighted averages should be taken. Remembering that large en-
tries in R lead to the suppression of the corresponding component
corrections, the weights

TR
R;;
are the appropriate choice for making the average for the corrected

’th time series element. Explicitly, the 4’th time series element
correction is chosen as

w; = (14)

. m
Ag;TS = Z wr sel[Ax; r, 7], (15)
r=1

where Az; , are the corrections of the corresponding coordinate
when appearing in the m points of the embedding space as coor-
dinate r, respectively and sel[u, k] is the function that selects the
1’th component from vector u.

In the first pass of the noise reduction algorithm, the average
is performed over considerably different corrections sel{Ax; -, 7],
r = 1,..,m to the same time series element. Further iterations of
the procedure ensure that the different representatives of the same
time series element converge to one value. For Hénon’s data, we
found that 5 iterations are sufficient to converge, for all considered
noise levels. In the different iterations, the values Q, d and R were
kept fixed. As an example, the effect of one iteration on the Hénon
system, to which noise with 0.01 standard deviation was added, is
shown in Fig. 2.

a) 038 ¢

b) 0.38 -

008 : 008 :
065 085 065 085

Figure 2: Results of non-orthogonal noise reduction, illustrated
by means of data from the Hénon attractor with additive Gaussian
noise of & = 0.01 std. dev. The unperturbed attractor structure
are the superimposed lines. a) Original data. b) Results after one
iteration.

6. IMPLEMENTATION

In the first step of the algorithm, a neighborhood around each data
point x», is required that contains at least Ny, points; the size of
the neighborhood should be at most €maz (to guarantee the linear
regime) and should contain at least 2m + 1 data points to ensure
good statistics for calculating the covariance matrix I". This can
be achieved with an efficient neighbor search algorithm. In the
next step, the covariance matrix (9) and its eigenvectors and eigen-
values are computed, by using standard tools from linear algebra.
Next, the corrections (10) are calculated. In order to obtain good
statistics, Nimin and emin should not be too small. We found that
Nmin = 50 is a good choice for the first iteration. For subsequent
iterations, when the points are pushed together by noise reduction,
smaller values for Npn should be chosen. Fortunately, the algor-
ithm is insensitive to small variations in the values for Nynin, €min,
and €mqz. Reasonable results can be obtained for whole ranges of
these parameters.

As discussed above, a crucial issue in the implementation of
the non-orthogonal projective noise reduction is the selection of
appropriate neighborhoods. Although the algorithm is rather sta-
ble with respect to the parameters defining the neighborhood size,
we propose a sophistication of the neighborhood selection method,
to achieve a further improvement of the already excellent algor-'
ithm. In particular, we propose a dynamic neighborhood selection
that assigns to each point a neighborhood of a locally optimized
size.
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There are several ways how this can be done in an efficient
way. Starting from a neighborhood U,, around a point x5, we need
to find a reliable measure for the quality of the approximation of
the (unperturbed) linearized dynamics (in the x-, z-spaces), by the
linear subspaces Ex,,, Ez, that are evaluated from the noisy data.

FE,, is well defined if the eigenvalues of the eigenvectors of
I extending into the “noisy” directions are much smaller than its
largest eigenvalue. However, if U, is too large, E.,, only provides
a poor approximation to the local linearized manifold due to the
strong influence of the nonlinearities for large neighborhoods. On
the other hand, the approximation is bad if all eigenvalues are of
comparable magnitudes. This will happen if 24, contains an insuf-
ficient number of points, or if it extends only over a range that is
comparable to the noise level. In this case, the linear space Es,
approximating the dynamics cannot properly be determined. For
this reason, the ratio of the largest “noisy” eigenvalue, Anoise, O
the largest eigenvalue pertaining to the principal dynamics, Amaz,
as a function of the neighborhood size € can serve as a measure
for the quality of the linear approximation, and local minima of
Anoise(€)/Amaz (€) are candidates for an optimal neighborhood
Size, €opt. In our algorithm, €, is determined automatically for
each point, by optimizing Anoise (€)/ Amaz (€), While the selection
of too large values for €,p; is prohibited.

7. RESULTS

We tested the non-orthogonal projective algorithm with dynamic
neighborhood selection on the Hénon data, for additive Gaussian
noise with standard deviations between 0.005 and 0.02. In all cas-
es, the central m — d = 3 coordinates were corrected and d = 2
coordinates remained uncorrected. According to (13), for the num-
ber of constraints ¢ = 3 emerges. For noise with standard devi-
ation € [0.07, 0.013], our algorithm with dynamic neighborhood
selection yielded noticeably better noise reduction if compared to
the non-dynamic variant. The meandering of the results around the
true attractor structures, which is observed for both algorithms, is
significantly suppressed by the dynamic approach, and the correct-
ed points generally lie closer to the ideal manifold. Furthermore,
the blurring in the structure, that is sometimes observed, is sig-
nificantly reduced by the dynamic method. Also, in the vicinity of
tangency points our algorithm shows an improved performance. In
Fig. 3 we give two illustrations for the performance of the noise re-
duction with dynamic neighborhood selection. It can be seen that
fine details of the original attractor structure can be recovered.

043
0.64 073

Figure 3: Effects of the dynamic noise reduction method on two
characteristic sections of the Hénon attractor after 4 iterations (ad-
ditive Gaussian noise with o = 0.01 std. dev).

However, the advantages of the neighborhood selection so-
phistication are restricted to noise from a relatively small interval
of standard deviations. For levels of noise beyond 0.013, the noisy
attractor shows almost no fine structures, and the dynamic neigh- -
borhood selection is therefore of no advantage. If the noise level is
smaller than 0.07, a relatively small number of neighboring points
already yields good statistics for the approximation of the true at-
tractor structure. In most cases, only points belonging to the to x,
closest piece of the expanding manifold will be recruited. In this
situation, the methods will produce practically identical results.

In conclusion, a considerable improvement at moderate noise
levels is observed. For other noise levels the use of the dynamic
neighborhood selection is not justified and only results in an in-
creased amount of calculation time and computational resources.
For large noise levels, we recommend as the most sophisticated
approach pre-filtering in combination with the dynamic neighbor-
hood selection algorithm. .
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