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Neuromorphic Analog VLSI Sensor for Visual
Tracking: Circuits and Application Examples

Giacomo Indiveri

Abstract—This paper presents a one-dimensional visual sensor,
implemented on a single VLSI chip using analog neuromorphic
circuits, for selectively detecting and tracking the position of the
feature with the highest spatial contrast present in the visual
scene. The chip’s photoreceptors adapt to stationary backgrounds
and can be tuned to respond maximally to specific target veloc-
ities. The sensor drastically reduces the amount of data to be
transmitted to further processing stages by encoding, in real time,
the position of the target in the form of a single continuous-time
analog variable. We describe the circuits implementing the sensor
and show applications to three examples of tracking tasks: a
stand-alone visual tracking system, an active fully analog tracking
system, and a mobile platform line-following system.

I. INTRODUCTION

NEUROMORPHIC vision sensors are typically analog
VLSI devices that implement hardware models of biolog-

ical visual systems and can be used for machine vision tasks
[1], [2]. It is only recently that these hardware models have
become elaborate enough for use in a variety of engineering
applications [3]. These types of devices and systems offer
an attractive low-cost alternative to special-purpose digital
signal processors (DSP’s) for machine vision tasks. They can
be used for either reducing the computational load on the
digital system in which they are embedded or, ideally, for
carrying out all of the necessary computation without the need
for any additional hardware. They process images directly
at the focal plane level. Typically, each pixel contains local
circuitry that performs, in real time, different types of spatio-
temporal computations on the continuous analog brightness
signal. In contrast, charge coupled device (CCD) cameras
or conventional complimentary metal–oxide–semiconductor
(CMOS) imagers merelymeasurethe brightness at the pixel
level, eventually adjusting their gain to the average brightness
level of the whole scene. In neuromorphic vision chips,
photoreceptors, memory elements, and computational nodes
share the same physical space on the silicon surface. The
specific computational function of a neuromorphic sensor is
determined by the structure of its architecture and by the
way its pixels are interconnected. Since each pixel processes
information based on locally sensed signals and data arriving
from its neighbors, the type of computation being performed
is fully parallel and distributed. Another important feature is
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the asynchronous operation of neuromorphic sensors, which is
preferable to clocked operation for sensory processing, given
the continuous nature of sensory signals. Clocked systems
introduce temporal aliasing artifacts that can significantly
compromise the time-dependent computations performed in
real-time sensory processing systems.

In this paper, we present a neuromorphic sensor that consists
of a one-dimensional (1-D) array of computational elements
that detect and track, in real time, the position of the feature
with highest spatio-temporal contrast in the visual scene.

Tracking features of interest as they move in the environ-
ment is a computationally demanding task for machine vision
systems. The control loop of active vision systems, comprising
motors that steer the visual sensor, relies on the speed of
the specific computation carried out. The stability of system
depends on the latency of the sensory-motor control loop
itself. To reduce this latency and improve the performance
of the active vision system several custom VLSI sensors that
pre-process the input image and extract the position of the
target, have been proposed [4]–[7]. As previously proposed
solutions, the tracking architecture here described reduces
the computational cost of the processing stages interfaced
to it by carrying out an extensive amount of computation
at the focal plane itself, and transmitting only the result
of this computation, rather than extensive amounts of data
representing the raw input image. Despite the principle of the
approach followed here being very similar in nature to the one
followed by the authors cited above, the tracking architecture
described here differs from previously proposed ones in two
key features: 1) it selects high-contrast edges independent of
the absolute brightness of the scene (as opposed to simply
selecting the scene’s brightest region [4], [5], [7]) and 2) it
uses a hysteretic winner-take-all (WTA) network, with positive
feedback and lateral coupling [8], to lock onto and smoothly
track the selected targets (different from WTA networks used
in other tracking devices [4]–[6]). We show, in Section III,
how these features allow systems that use the architecture
proposed here to reliably track natural stimuli in a wide variety
of illumination conditions. Specifically, we will describe three
examples of system applications that make use of the sensor
proposed to track, passively and actively, the edges with the
highest contrast present in the sensor’s field of view.

II. THE TRACKING SENSOR

The tracking architecture proposed here is structured in
a hierarchical way and can be implemented on a single-
chip device. As the architecture is 1-D, we can design thin,
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Fig. 1. Block diagram of single-chip tracking system. Spatial edges are detected at the first computational stages by adaptive photoreceptors connected
to transconductance amplifiers. The edge with the strongest contrast is selected by a WTA network and its position is encoded with a single continuous
analog voltage by a position-to-voltage circuit (see text for details).

long processing columns in a way to optimize the area used
and increase the number of pixels on the device. Two chips
of approximately 2 mm 2 mm were fabricated using a
standard 2- and 1.2-m CMOS technology, respectively. The
processing columns of each chip are wide, where is
the scalable CMOS design rule parameter, corresponding to
1 m for the 2- m process and to 0.6-m for the 1.2- m
process. As the circuits are analog and some circuit elements
(such as capacitors) don’t scale withthe layouts of the two
chips are slightly different (despite the schematic diagrams
are identical). The 2-m chip has a pixel pitch of 60m and
contains 25 processing columns, while the 1.2-m chip has a
pixel pitch of 36 m and contains 40 processing columns.

A. System Architecture

Image brightness data is processed in parallel through five
main computational stages. A block diagram of the device’s
architecture is depicted in Fig. 1. The first stage is an array
of adaptive photoreceptors [9], [10] that logarithmically map
image intensity into their output voltages. The second stage is
composed of an array of simple transconductance amplifiers,
operated in the subthreshold regime, which receive input
voltages from neighboring photoreceptors [11]. The amplitude
of their output currents encode the contrast intensity of edges
and the sign their polarity. At the third computational stage,
the polarity of each edge is gated so that the sensor selectively
responds either toON edges (dark to bright transitions), or to
OFF edges (bright to dark transitions), or to both. The fourth
stage uses a hysteretic WTA network [8], which selects and
locks onto the feature with strongest spatial contrast moving
at the speed that best matches the photoreceptor’s velocity
tuning. Finally, in the last stage, there is a position-to-voltage
circuit, as described in [12], that allows the system to encode

Fig. 2. Portion of layout of the 1.2-�m chip containing seven processing
columns. The size of each computational stage is evidenced on the right.

the spatial position of the WTA network’s output with a single
analog value. The 1.2-m chip layout of these circuits is shown
in Fig. 2.

Fig. 3 summarizes the general response properties of the 2-
m chip by showing the outputs of the different computational

stages described above. The top trace of Fig. 3(a) shows the
responses of the array of adaptive photoreceptors to a black
bar on a white background, imaged onto the chip’s surface
using a standard CS mount 4-mm lens with an-number
of 1.2. The two lower traces of the figure are the response
of the edge polarity detector circuits, representing the spatial
derivative of the input stimulus. Fig. 3(b) shows the response
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(a)

(b)

Fig. 3. (a) Response of the array of adaptive photoreceptors to a black bar on
a white background (upper trace) and output traces of the edge-polarity detec-
tor circuit (lower traces). (b) Output characteristic of the position-to-voltage
circuit. The figure’s inset contains snapshots of many output traces of the
WTA network superimposed as a stimulus was moving from left to right. The
datapoints in the main figure represent the output of the circuit corresponding
to the pixel position of the winner in the inset data.

of the position-to-voltage circuit to 11 different winning pixel
positions. The figure’s inset displays 11 snapshots of the WTA
response to the 11 corresponding spatial positions of the input
stimulus.

B. Adaptive Photoreceptor Circuit

This photoreceptor circuit, originally designed by Tobi
Delbrück [9] and further improved by Shih-Chii Liu [10],
has been used extensively in many neuromorphic sensors.
The response of the circuit is invariant to absolute light
intensity (changing logarithmically with image brightness).
The adaptive photoreceptor exhibits the characteristics of
a temporal bandpass filter, with adjustable high- and low-
frequency cutoff values. Fig. 4 shows the response of the array

(a)

(b)

Fig. 4. (a) Response of the array of photoreceptors, with a very slow
adaptation rate to a dark bar on a white background moving from right to
left with an on-chip speed of 31 mm/s. The dc value of the response has been
subtracted. (b) Response of array of photoreceptors with a fast adaptation rate
to the same bar moving at the same speed (left-pointing triangles) and at a
slightly slower speed (upward-pointing triangles).

of photoreceptors to a moving bar for two different adaptation
settings. In Fig. 4(a), the adaptation rate was low, with adap-
tation time constants in the order of hundreds of milliseconds.
In Fig. 4(b), the adaptation rate was very high, such that the
photoreceptors adapt quickly to brightness transients. Because
of its adaptation property, the photoreceptor biased in this
way has a response which results in both contrast and speed
dependence.

C. Spatial-Derivative Circuit

Spatial derivative is implemented using simple transcon-
ductance amplifiers operated in the subthreshold regime. The
amplifiers receive input voltages from neighboring photore-
ceptors and provide a bidirectional output current that is
proportional to the hyperbolic tangent of their differential input
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Fig. 5. Circuit diagram of the current polarity detector. PositiveIdi� currents are conveyed to the n-type current mirror M4, M5. NegativeIdi� currents
are conveyed to M6 through the the p-type current mirror M1, M6. Depending on the values of the control voltage signalsVCTRL andVREF; the output
currentIedg represents a copy of only one of the two polarities ofIdi� ; or of both polarities ofIdi� (see text for details).

[11]. The output current saturates smoothly as the differential
voltage increases (in absolute value) beyond 200–300 mV.
The possibility of electronically smoothing the input image (at
the adaptive-photoreceptors stage) allows the user to operate
the spatial-derivative circuit always in its linear range, for
a stimulus with fixed spatial frequencies. Furthermore, the
presence of multiple stimuli with contrast high enough to
saturate the transconductance amplifiers currents is not going
to compromise the sensor’s tracking performance, as the
WTA network is able to lock onto the feature selected (see
Section II.E).

D. Edge-Polarity Detector Circuit

The polarity of edges in the visual scene is encoded by
the sign of the transconductance amplifiers’ currents. Each
of these currents is fed into a circuit of the type shown
in Fig. 5. The amplifier in the left part of Fig. 5 together
with transistors M1–M6 implement acurrent conveyor[13].
This circuit is used to separate the positive component of the
input current from the negative one, and to decouple
the spatial-derivative stage from the current-polarity selection
stage. Negative input currents are conveyed to transistor M6,
while positive ones are flipped through the current mirror M4,
M5, and conveyed to M8. Transistors M6 and M8 source their
currents to the polarity-selection circuit (transistors M9–M12)
[6]. The output current of the polarity-selection circuit
representsOFF edges (the positive component of ), ON

edges (the negative component of ), or either type of
edge (the absolute value of ), depending on the control
voltage and settings. The voltage on the
positive node of the amplifier is a constant used to bring the
circuit into its correct operating point and (in typical operating
conditions) assumes values ranging from 1 to 2.5 V. The
output currents of all edge-polarity detector circuits are
sourced, in parallel, to the elements of the next processing
stage: the hysteretic winner-take-all network.

E. Hysteretic WTA Network

This circuit is an extension of the basic current-mode WTA
network [14]. It collectively processes all its input signals
using strictly local interconnections, it operates in parallel,
and it is compact, using only eight transistors per cell. Fig. 6
shows three of these cells connected together. Each cell is
connected to its neighbor through a pass transistor controlled
by . The set of four n-type transistors in the lower part
of each cell implements the current-mode WTA with diode
source degeneration, as described in [14]. The current
of the bottom-right n-type transistor represents the sum of all
of the currents converging into nodeand can be monitored to
evaluate the effect of the control voltages and .
The p-type current mirror in the top part of each cell is used
to provide the output of the network and simultaneously
to implement a local positive-feedback circuit [8], [15]. As the
WTA network allows only one cell at a time to have a nonzero
output current, only the the feedback loop of the winning cell
will be active. The positive feedback introduced reinforces the
choice of the winning cell by injecting into its input node
a fixed amount of current, corresponding to a fraction of
modulated by the voltage . This operation introduces a
hysteretic behavior which allows the WTA network to lock
onto a winning pixel [8], [15], [16].

This hysteretic WTA network also contains an additional
cell connected to a bias. This additional cell can be used to set
a threshold for the spatio-temporal contrast of edges present
in the scene; if the input from external bias is higher than all
other inputs, the WTA will signal the absence of high-contrast
edges in the visual scene.

The option of introducing hysteresis in the WTA network
might cause problems in dynamic environments for which it
is necessary to update the winning pixel position continuously
(e.g. in the domain of tracking applications). One solution
would be to reset the WTA network manually any time it needs
to be updated [15]. A more elegant solution is the one of using
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Fig. 6. Schematic diagram of the WTA circuit. Examples of three neighboring cells connected together.

lateral coupling between cells, allowing part of the hysteretic
component of the winner’s current to be passed to its neighbors
[8], [16]. Cells adjacent to the winning pixel will, hence, be
facilitated in the winner computation process, whereas cells
in the periphery will be inhibited. This solution takes into
account the assumption that the features being selected move
continuously in space, and ensures that once the WTA network
has selected a target and is engaged in visual tracking, itlocks
onto it and does not get distracted by possible distracting
stimuli in the periphery. Lateral coupling between cells of the
hysteretice WTA network can be accomplished by properly
setting the gate voltage of the pass transistors in Fig. 6.
These transistors allow the WTA network to spread laterally
both the hysteretic current being generated at the winning cell
and the input currents coming from the edge-polarity detector
stage. By choosing an appropriate combination of control
voltages and it is possible to bias the WTA
network such that it produces different behavioral responses.
For example, by setting to a subthreshold value (e.g.

V) and to approximately 4 V, we effectively
turn off the positive feedback, such that the WTA network
behaves as a conventional one; the currents of Fig. 6 are
all null except for the one belonging to the winning cell and the
WTA output oscillates between similar inputs. Furthermore,
the array of currents replicates the distribution of input
currents with a degree of spatial smoothing proportional
to the value of . If, on the other hand, is set to
the positive feedback loop is turned fully on; the feedback
current is exactly (modulo device mismatch effects) and the
WTA network exhibits its hysteretic properties (it selects and
locks onto inputs moving continuously in space). The stability
properties of this WTA network are the ones of conventional
WTA circuits with positive feedback, and have been analyzed
in detail in [15]. Similarly, the dynamical response properties
of the network are the same ones of the current-mode WTA
network described in [14] and depend on the values ofand
of the total current entering the input nodes of the WTA cells
(namely, summed to the hysteretic feedback current and
to the currents coming from the lateral coupling transistors).
It is possible to evaluate the total current entering the input

Fig. 7. Response of the WTA network to theON-edge of a bar moving from
left to right at an on-chip speed of 31 mm/s. The top trace represents the
currentsIsum of the WTA array, while the bottom trace represents the voltage
outputs of the array of adaptive photoreceptors.

nodes by measuring the currents at each node of the
network. Fig. 7 shows an example of the WTA response to
a moving bar given the following control voltage settings:

V, V, V. The top trace of
the figure, representing the values of the currents shows
effect of spatial smoothing of the input currents combined with
the hysteretic current coming from the positive feedback loop
of the winning cell. It is clear from this figure that the active
winning cell is the one corresponding to pixel 26. The bottom
trace shows the response of the adaptive photoreceptors. The
input stimulus was the same one used for the previous figures:
a 1-cm wide black bar on a white background positioned
approximately 17 cm away from the focal plane and imaged
onto the chip through a 4-mm lens moving from left to right
with an on-chip speed of 31 mm/s.

F. Spatial Position-Encoding Circuit

This circuit consists of a series of voltage followers, using
a common global current mirror which receive inputs from a
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Fig. 8. Schematic diagram of position-to-voltage circuit. Example of threeneighboring cells connected together.

linear resistive network [12] (see Fig. 8). The currents
being generated by the WTA network at the previous stage
are used as bias currents for the followers. As only one

is nonnull at any given time, all followers are switched
off, except for the one connected to the winning WTA cell.
The output of the spatial position-encoding circuit thus
represents the position of the winning cell in the array.

III. SYSTEM APPLICATIONS

In this section, we describe three different application ex-
amples. These applications were developed with the intent
of demonstrating the possible uses of a 1-D visual tracking
device. They have not been optimized and they do not encom-
pass all the possible application domains for such a device;
yet, despite their unsophisticated nature, they have proven to
perform satisfactorily in a wide range of testing conditions.

A. Stand-Alone Visual-Tracking Device

We attached a 4-mm lens to the 2-m chip and mounted
it on a board with external potentiometers, used to set its
bias voltages. The board also has a 1-D LED display with
its driver (see Fig. 9). The LED display is used to have visual
feedback on the position of the feature selected by the chip.
The power supply to the whole board is provided by a 9-
V battery (attached to the back of the board) and a voltage
regulator IC.

The system is able to detect and report, in real time, the
position of realistic types of stimuli moving within its field
of view. It performs reliably in a wide variety of illumination
conditions, ranging from dim artificial room illumination to
bright sunlight, thanks to the adaptive properties of the pho-
toreceptors at the input stage. For these applications, the bias
settings of the photoreceptor stage are those of fast adaptation
rates, as described in Section II-B. Lateral coupling between
neighboring cells was turned off at the photoreceptor stage but
turned on at the WTA level ( of Fig. 6 was set to 1.2 V).
Smoothing at the WTA level was useful to reduce the offsets
introduced by the spatial derivative and edge-polarity detector
circuits. The hysteretic current of the WTA network (summed
back into the input nodes through the positive-feedback path)

Fig. 9. Picture of the stand-alone tracker board. The neuromorphicsensor is
on the chip beneath the lens. On the left part of the board there is an array
of potentiometers used to bias the chip’s control voltages. On the top, there
is an LED display, comprisingthree display bar lines with their corresponding
drivers. The scale in the left part of the figures is in millimeters.

was set to be a small fraction of the maximum possible feed-
forward input current (controlled by the bias voltage of the
spatial-derivative transconductance amplifier). All other bias
parameters on the chip were not critical and were set to
reasonable subthreshold voltages (i.e., 0.5 V–0.8 V for n-type
transistors and 4.4 V–4.1 V for p-type transistors). The system,
biased in such a way, adapts out the background of a stationary
scene and selects high-contrast moving targets present in its
field of view, tracking them as they move smoothly in space.
Fig. 10(a) shows the output of the chip in response to a finger
moving back and forth in front of the lens in a laboratory
environment with cluttered background. Fig. 10(b) shows the
output of the chip in response to a black pen moving at a
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(a)

(b)

Fig. 10. (a) Output of the system in response to a finger moving back and
forth in front of the chip. (b) Output of the system in response to a pen
moving at approximately 8000 pixels/s on a stationary light background. Note
the different time scales on the abscissae.

speed of almost 8000 pixels/s on a uniform background. As
mentioned in Section II, each pixel of the 2-m chip is 60- m
wide, and thus, the velocity of the target on the focal plane
corresponds to approximately 0.5 m/s. The output of the chip
is continuous in time, but discrete in space; the discrete jumps
present Fig. 10 represent the shifting of the winning position
from one pixel to the next.

B. Active Tracking System

We implemented a fully analog active tracking system by
mounting a board with the 1.2-m tracker chip and a 4-mm
lens onto a dc motor (see Fig. 11). The bias settings of the chip
were the same used in Section III-A, except for the value of
the hysteretic current in the positive-feedback path of the WTA
network, which was set to be greater than the feed-forward
current . Specifically, the WTA bias voltage was set

Fig. 11. Picture of tracker chip mounted on a dc motor. The output of the
chip is sent to a dual-rail power amplifier which directly drives the motor.

to a value slightly higher than the bias voltage of the spatial-
derivative transconductance amplifier, and the source voltage
of the p-type transistor of the positive-feedback current mirror
( in Fig. 6) was set to 5 V. In this way, the WTA network
locks onto the selected target and allows only the nearest-
neighbor units to win if the selected stimulus moves (see also
Fig. 7 is Section II-E). The position-to-voltage circuits were
biased to encode the position of the winner with voltages
ranging from 1 to 4 V. The analog output of the chip was
rescaled and amplified (via anST L272 power amplifier),
such that the selection of features in the right part of the visual
field produces positive voltages and the selection of features
in the left part of the visual field produces negative voltages.
The output voltage, with an amplitude directly proportional
to the distance of the target’s position from the center of the
retina, is used to drive the dc motor. The sensory motor loop,
so designed, implements a negative feedback system which
attempts to zero the motion of the target on the retina: if
a target appears in the periphery of the visual scene, the
sensor will drive the dc motor so as to orient the sensor’s
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(a)

(b)

Fig. 12. (a) Setup of the active tracking system as seen from above. The
angle � represents the angular displacementproduced by the dc motor,x

represents the target’s position in the visual space,y represents the distance
of the target’s projection on the retina from its center. The angular velocity
_� is proportional toy. (b) Chip data measured as the system was engaged in
tracking a swinging bar. The bar’s position (circles) was measured using a
separate (fixed) tracking board, while its velocity (solid line) was computed
off-line from the discretized position data. The crosses represent the output
of the active sensorused to drive the system’s dc motor.

gaze toward the target. As the projection of the target on the
retina approaches the center of the pixel array, the output of
the system (i.e., the motor’s power supply) decreases toward
zero, bringing the motor to a stop. In terms of equations we
can write, to a first-order approximation

(1)

where represents the position of the target in the visual
space, represents its corresponding projection on the
retina, the rotation angle produced by the dc motor around
its axis, and the optical magnifying factor [see Fig. 12(a)].
The term corresponds to the motor’s angular velocity, and

to the open-loop gain of the feedback system. Solving for
we obtain

(2)

If the system is successful in zeroing the motion of the
target on the retina we should measure a retinal
slip directly proportional to the velocity of the target in the
visual space. Fig. 12(b) shows traces obtained from the system
while it was engaged in tracking a swinging target. The target
stimulus was a black bar on a white background, similar to
the one used to characterize the adaptive photoreceptor circuit
in Section II-B. The position of the target in visual space was
measured optically by the stand-alone tracker board described
in Section III-A. The target’s velocity was computed off-line
by differentiating the discretized position signal (hence, the jit-
ters in the figure). As shown, the measured response matches,
to a first-order approximation, the theoretical prediction.

The task performed by the system here described is that of
smooth pursuit[17]. This model does not take into account
the velocity of the target, but only its position. More elaborate
models of smooth pursuit tracking have been proposed [6],
[7], but none using fewer components (namely a neuromorphic
CMOS sensor, a dc motor, a power amplifier, and a dual power
supply). The system presented here can be considered as the
minimal, lowest cost and most compact solution to 1-D visual
tracking of natural stimuli.

C. Roving Robot

Another application domain which is well suited for the
visual tracking device is that of vehicle guidance and au-
tonomous navigation. These types of tasks, in fact, require
compact and power-efficient computing devices which should
be robust to noise, tolerant to adverse conditions induced by
the motion of the system (e.g., to jitter and camera calibration
problems), and possibly able to adapt to the highly variable
properties of the world. To test our tracking sensor within this
framework, we interfaced it to a mobile robot and measured
the performance of the overall system in a line-following task.
The mobile robot is aKoala (K-Team, Lausanne). It measures
32 cm in length, 31 cm in width, and is 11-cm high. It has
an on-board Motorola 68 331 processor, 12 digital I/O ports,
and 6 analog inputs (with 10-bit A/D converters), 1 MByte
of RAM, and 2–3 hours of autonomous operation from its
battery. The tracking sensor was mounted onto a wire-wrap
board together with a 4-mm lens with annumber of 1.2,
and it was attached to the front of Koala with the lens tilted
toward ground at an angle of approximately 60in a way to
image onto the retinal plane the features present on the floor
approximately 10-cm ahead [see Figs. 13(a) and 14(a)]. The
bias settings of the chip were the same ones used in the analog
active tracking system, described in Section III-B.

For this specific application example, we made use of the
additional node of the WTA network with its input current
set by an external potentiometer. This allowed us to set a
threshold value against which we could compare the contrast
of edges present in the visual scene. In the case of absence
of lines to follow, the WTA network selects the external input
and the sensor outputs a unique voltage different from the set
of voltages generated by visual stimuli. The output voltage
of the tracking chip is directly applied to one of the analog
input ports of the robot and digitized. To implement the line-
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(a)

(b)

Fig. 13. (a) Koala robot with neuromorphic sensor mounted on its front.
(b) Positions of Koala following a line, sampled at intervals of 0.25 s for
a period of 37.5 s, in which the robot completed four loops. The features
(white squares) were obtained by tracking a dark cross drawn on the white
top of Koala.

following task, Koala uses a very simple control algorithm
which reads the tracking chip’s output and backs up
in a random direction if no edge if found. If, on the other
hand, the tracker chip detects an edge and outputs a valid
voltage, the algorithm shifts and re-scales so that the
variable encoding edge positionpos is zero when the target
is in the center of the chip’s visual field; it sets the forward
component of the velocityfwd to a value weighted by a
Gaussian function ofpos (fwd is maximum whenpos=0 and
it decays aspos increases); it sets the rotational component
of the velocity rot to a value proportional topos ; and
finally, it executes motor commands sendingfwd and rot
directly to the robot’s motors. Scaling the forward component
of the velocity fwd by a Gaussian function of the line’s
eccentricity allows the robot to slow down in curves. If the

(a)

(b)

Fig. 14. (a) Koala robot with neuromorphic sensor mounted on its front and
a white sheet of paper with crosses attached on its top, seen from above. (b)
Positions of Koala following a white line on a light-blue carpet floor, sampled
at intervals of one second over a period of approximately 3 min. The features
(white squares) were obtained by tracking the bars appearing on the top part
of Koala (see text for explanation).

line goes out of the field of view of the sensor (e.g., in
presence of steep curves), the algorithm forces the robot to
stop and back up until it again finds a line to follow. The
line-tracking algorithm makes very little use of the on-board
CPU’s processing power (leaving it free for other CPU-time
demanding processes). The computationally expensive part
of the processing (involving visual preprocessing and target
selection) is done in real time by the neuromorphic sensor.
Using this simple control algorithm in conjunction with these
types of sensors, the robot is able to reliably track lines
randomly layed out on the floor for a wide variety of conditions
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(e.g., floors with different texture, cables of different colors and
sizes, extreme illumination conditions, etc.) [18]. Depending
on the bias settings of the edge-polarity detector circuit, the
line-following robot will always make left turns at road-forks
(e.g., if the circuit is selective toOFF edges and the line is
darker than the background) or right-turns. The bias settings
can be changed at run-time by the robot using one of its digital
I/O ports.

Fig. 13 shows the robot in the process of tracking a line.
The line (a high contrast bar layed onto the floor) is long
approximately 323 cm and forms a closed loop of elliptic shape
with major axis long, roughly 110 cm, and a minor axis long,
90 cm. The robot followed the line with an average speed of
5 loops/min (corresponding roughly to 27 cm/s). To measure
quantitatively the robot’s performance, we stored a sequence
of images (sampled at a rate of 4 frames/s) and applied them
in input to the Kanade–Lucas–Tomasi Feature Tracker [19].
The data was taken in dim natural light conditions (typical
of a cloudy rainy day in Zurich, Switzerland). Fig. 13(b)
shows the features tracked by the algorithm for a sequence
of 150 frames (in which the robot completed four loops). The
features selected by the algorithm correspond to a (moving)
black cross drawn on the robot’s white top. Closely grouped
features indicate the re-visitation of nearby positions over time.
Features are more dense in the steep parts of the curve because
of the slower speed values that the robot uses, as determined
by its control algorithm.

Fig. 14 shows an experiment similar to the one described in
Fig. 13, but run in a different, less controlled environment.
The robot was following a line of white paper-adhesive
tape layed on a light-blue carpet forming an8 figure in
an area of approximately 1.3 2.5 m. The illumination
conditions were of bright natural sunlight (typical of sunny
summer days in Telluride, Colorado). The robot was partially
covered with a sheet of paper containing bars and crosses [see
Fig. 14(a)]. The Kanade–Lucas–Tomasi tracking algorithm
selects different corners of the crosses as the robot changes
its orientation. Fig. 14(b) shows the output of the tracking
algorithm for a sequence of 200 images, sampled at intervals
of approximately 1 s, in which the robot makes two full loops
around the8 figure. As in Fig. 13(b), white squares are more
dense in the steeper parts of the curve because the robot slows
down at those points. The robot is able to follow the line
reliably in both directions, always passing the intersection of
the 8 figure, for a wide selection of (maximum) speeds. At
high speeds, the robot occasionally looses the line (in the
steep parts of the curve), comes to a stop, backs up, and starts
following the line again until it reaches the shallow parts of
the curve where it speeds up again to the maximum speed.1

IV. CONCLUSION

We described the architecture of a neuromorphic visual
sensor that selects and reports the position of the feature with
highest spatio-temporal contrast present in the visual scene. We
showed the response properties of the circuits implementing

1An animated sequence of the robot engaged in tracking the line of
Fig. 14(b) can be viewed at http://www.ini.unizh.ch/˜giacomo/koala-line.html

its different processing stages. The device described is not
merely an imaging array, but an intelligent sensor designed for
tracking applications. By computing the relevant information
at the focal plane and providing a single continuous-time
output, the sensor selectively reduces the amount of data to
transmit to further processing stages, saving both communi-
cation bandwidth and response latency, quantities that are of
vital importance in real-time tracking applications.

The sensor proposed is a 1-D device; in principle, its
extension to two dimensions is straightforward (the WTA
network would be global, receiving inputs from all the pixels
of a two-dimensional (2-D) array and providing outputs to two
independent 1-D position-to-voltage circuits) but the layout
of each cell would have a relatively large size. A possible
alternative to the (large) circuits used to compute the absolute
value of the spatial derivative of visual features and to provide
input to the WTA network could be the use ofbump circuits
[20]. 2-D contrast-sensitive silicon retinas, that make use of
these circuits, have recently been developed [21] and the size
of their pixels (approximately 100m on a side) indicate that
even with the addition of the WTA circuits, a 2-D tracker
chip implementation would have pixels of acceptable size.
Other 2-D tracking sensors have already been proposed [7],
[4], but these are intensity based and don’t pre-process the
photo-receptor output to compute spatial derivatives, so they
simply select the brightest feature in the visual scene. They
are not suited for the type of applications described in this
paper or, more generally, for applications in which the feature
that needs to be tracked is not necessarily the brightest one
present in the visual scene.

We showed three simple examples of tracking applications
which make use of the sensor, in real-world scenarios. The
examples, thought of as feasibility exercises, have proven to
be effective and have shown the sensors’ capabilities. They are
examples of successful neuromorphic systems able to perform
complex visual tasks using a single analog VLSI chip as
a front-end preprocessor. This, and other sensors of similar
nature, have proven to be efficient, compact, and low-cost
solutions for real-world applications that can be considered
as a viable alternative to conventional (bulky and expensive)
digital-machine vision systems.
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