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Abstract. We have developed compact analog integrated circuits that simulate two synaptic excitatory conduc-
tances. A four-transistor circuit captures the dynamics of an excitatory postsynaptic current caused by a real AMPA
conductance. A six-transistor circuit simulates the effects of a real voltage-dependent NMDA conductance. The
postsynaptic current dynamics are modeled by a current mirror integrator with adjustable gain. The voltage depen-
dence of the silicon NMDA conductance is realized by a differential pair. We show the operation of these silicon
synaptic conductances and their integration with the silicon neuron (Mahowald and Douglas, 1991).
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1. Introduction

Neuromorphic systems are artificial systems that cap-
ture aspects of neuronal function and organization
(Douglas et al., 1995; Mead, 1989). They are often
realized in analog very-large-scale integrated (aVLSI)
circuits. These electrical circuits compute using ana-
log voltages and currents. Such silicon implementa-
tions range from vision chips (for example, Mahowald
and Mead, 1991) to synaptic implementations such
as the ones presented in this article. This method of
building neuromorphic systems has become popular in
recent years and is calledneuromorphic engineering
(Watson, 1997). By building and operating these sys-
tems we hope to gain further insight into computational
principles of neural networks and systems.

Silicon implementations of synapses primarily deal
with the on-chip weight storage and the learning rule
(Diorio et al., 1995; Elias et al., 1997; H¨afliger and
Mahowald, 1997; Schultz and Jabri, 1995; Westerman
et al., 1997). In those silicon synapses, the postsynaptic
current is modeled as a simple pulse. Here we present
analog circuitry that approximates the dynamics of
the EPSC (excitatory postsynaptic current) caused

by a typical AMPA and NMDA conductance. The
construction of these silicon synaptic conductances
was motivated by computational studies and hypoth-
esis about pyramidal cells. The postsynaptic current
might play a crucial role, in particular the NMDA con-
ductance. For example, the voltage-dependent NMDA
conductance can act in a multiplicative manner (Mel,
1992b) or in a coincidence manner (K¨onig et al., 1996).

One of the most pressing contraints in a VLSI design
is the limited silicon area. Often, one has a regular
array of, for example, photoreceptors or of synapses.
A larger number of photoreceptors in a fixed area leads
to an image with better resolution, a larger number of
synapses leads to a more detailed neuronal model. The
synaptic conductances shown here are compact enough
to be built in large numbers.

Another important constraint is the number of pa-
rameters on the chip. A large number of parameters
leads to a huge parameter space and complex wiring
in chip designs. The correct parameter space must be
found by tuning the parameter values and complex
wiring limits the optimal use of silicon area. Therefore,
one aims for few parameters. Our synaptic conduc-
tances need only a few parameters.
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Figure 1. A: Analog circuitry to simulate an AMPA conductance. It consists of an input transistor T1, a weight transistor T2, and a current
mirror integrator (T3, T4,Ci) that approximates the EPSC. B: Circuitry of the NMDA conductance. In addition to the AMPA circuit, it contains
two differential transistors emulating the voltage dependence. For further details, see text. C: Schematic drawing (not simulation) of the response
of the current mirror integrator with adjustable gain to a current input pulse (-IWGT). Two different curves are drawn qualitatively for two values
of TAU (solid and dashed lines). D: Qualitative comparison between the current-voltage relation of the silicon and natural NMDA conductance.
In nature, the relationship gives rise to a bell-shaped curve (Johnston and Wu, 1995). In silicon, the curve consists of two distinct parts: the
upward part is a sigmoid due to the differential pair; the downward part is a linear decay due to the difference between EION andVm on transistor
T4. The kneepoint of the sigmoid is set by the voltage REF, the amplitude by the parameter WGT. RP: resting potential.

We show the following measurements from our first
chip: the integration of the membrane potential in
response to successive stimulation of the silicon AMPA
and NMDA conductance and the operation of the sil-
icon synapses in conjunction with the silicon neuron
(Mahowald and Douglas, 1991).

2. Methods

The postsynaptic current is modeled by a current mir-
ror integrator with adjustable gain. It consists of two

transistors (T3, T4) and a capacitance (Ci) (see Fig. 1A
and B, the grey box labeledEPSC modeling). In the
following we explain how the circuit operates.

We first study the behavior of the circuit without
the capacitanceCi . The two transistors (T3, T4)—of
which T3 is diode connected—form a simple current
mirror (Mead, 1989, p. 39). The current through T4
is a copy of the current through T3, hence the name
current mirror. A pulsed input current will result in a
pulsed output current. Transistor T4 acts like a current
source and dumps the current onVm, the membrane
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potential node. The gain of the current mirror is set by
the difference between the two voltage sources EION
and TAU. A pulsed input current will result in a scaled
pulsed output current.

A current mirror with a capacitance (Ci ) is a current
mirror integrator. The capacitance sets the dynamics of
the mirrored current. A pulsed input current will result
in the following output: during the pulse the output
current will increase roughly sigmoidally; at the end of
the pulse the output will decrease like 1/time.

By changing the gain of the current mirror we can
modulate the rise and decay time constant of the out-
put current. Figure 1C shows qualitatively the EPSC
dynamics for two values of TAU. They are roughly sim-
ilar to dynamics of EPSC models, which show a fast
increase and a slower decrease in current (Johnston and
Wu, 1995).

The parameter EION is a fixed voltage and can be
seen as the reversal potential of the ion.

2.1. The AMPA Conductance

Neurons communicate with each other by spikes propa-
gating on axons. In silicon networks (Deiss et al., 1998),
communication between neurons is done through dig-
ital voltage pulses. At each synapse, this digital pulse
has to be converted into analog currents suitable for
computation in silicon neurons. In Fig. 1A and B tran-
sistors T1 and T2 carry out this conversion and can be
viewed as the presynaptic terminal.

Transistor T1 is driven by the presynaptic voltage
pulse (SPK). Therefore, T1 works like a switch. This
step is labeledinput. We scale down the digital current
to an analog current (IWGT) by applying an analog
voltage (WGT) to the gate of T2. WGT represents the
weight of the synaptic conductance. That part of the
circuit is labeled withstrength. The current IWGT then
goes through the current mirror integrator.

2.2. The NMDA Conductance

To include a voltage dependence in our synaptic
scheme, we choose a differential pair (Mead, 1989,
p. 67). This device generates an output current that is
proportional to its input voltage difference. The circuit
consists of three transistors: a bias transistor T2a that
sets the maximum current (bias current); and two tran-
sistors T2b and T2c whose gate voltages determine the
ratio of the currents that flow through the two transis-
tors (labeledvoltage dependence).

The bias transistor T2a represents the weight as does
T2 in the AMPA circuit. The membrane potential (Vm)
at T2c is compared against a fixed reference voltage
(REF) at T2b. IfVm is high during the pulse input on T1,
more current goes through transistor T2c. This current
is used for the EPSC.

3. Results

A chip of approximately 2×2 mm2 was fabricated us-
ing a standard 2µm CMOS technology. Transistors
of the synaptic circuits are 6µ wide and 4µ long. The
capacitanceCi is about 0.45 pF. The remaining figures
(2–6) show recordings from that chip.

As a passive membrane model we use a follower
integrator (Mead, 1989, chap. 9), whose output repre-
sents the membrane voltage. The follower integrator is
a rough approximation to a RC circuit, and we used it
already for the silicon neuron (Rasche et al., 1998).
The resistance of the follower integrator can be set
by the transconductance of the amplifier. The synap-
tic currents (IAMPA and INMDA) are sourced into the
capacitance of the follower integrator.

Examples of EPSP dynamics of our synaptic aVLSI
conductances are illustrated in Fig. 2. Responses show
the two possible extreme dynamics (a and b) that are
determined by the current mirror integrator. Decay
times are between around 20 and 30 ms. The constant
decay is due to the large signal input of the follower
integrator.

Figure 2. These and following figures show recordings from a fab-
ricated chip. Response of the membrane voltage (Vm) after stimula-
tion of a silicon AMPA conductance by a presynaptic spike (AMPA).
Two different EPSP dynamics (a and b) for three different weights
are shown. EPSP maximum amplitudes are 200, 300, and 400 mV.
A: TAU =4.08 V, WGTS=0.515, 0.53 and 0.547 V, respectively. B:
TAU=4.3 V, WGTS=0.811, 0.823 and 0.834 V, respectively. For
all the plots shown, we chose the following parameter values: presy-
naptic pulse width of 1 ms, resting potential=1.2 V, EION=4.0 V.
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Figure 3. Response ofVm after stimulation of a silicon AMPA
conductance by a presynaptic burst of spikes (AMPA). The burst
consists of a sequence of five spikes with various interval lengths:
A: 10 ms, B: 8 ms, C: 6 ms, D: 4 ms. A single EPSP has an amplitude
of 200 mV. Parameter values: TAU=4.3 V, WGT=0.811 V.

Figure 4. Response ofVm after stimulation of a silicon NMDA
conductance by a presynaptic burst of spikes (NMDA). As before,
the burst consists of a sequence of five spikes with various inter-
val lengths: A: 10 ms, B: 4 ms. The first EPSP has an ampli-
tude of 200 mV as the EPSP amplitude of Fig. 3. The amplitudes
of the second and third EPSP show the amplifying effect of the
NMDA conductance. Parameter values: REF=1.3 V, TAU=4.08 V,
WGT=0.564 V.

Figure 3 demonstrates the summation ofVm due
to the AMPA conductances in response to a burst of
spikes. Summation is initially linear and shows later
signs of sublinear summation due to the decreased volt-
age difference (Vm-EION) across transistor T4. The
difference is equivalent to the driving force (V − E) in
biological membranes.

The effect of the NMDA conductance onVm is
demonstrated in Fig. 4. Presynaptic stimulation occurs

Figure 5. Demonstration of the amplifying effect of the NMDA
conductance in conjunction with the AMPA conductance. A–C: An
AMPA stimulation (upper pulse) is followed by a NMDA stimula-
tion (lower pulse) with decreasing interval. A: Interval 15 ms. The
voltage dependence does not have a significant effect yet. Here, the
weight of the NMDA is smaller than in the experiment in Fig. 3
and a single NMDA EPSP can hardly be seen. B: Interval 10 ms.
First signs of voltage dependence emerge. C: Interval 5 ms; voltage
dependence in its full extent. In contrast: D: The NMDA conduc-
tance stimulation is followed by an AMPA conductance stimulation.
The preceding NMDA EPSP can hardly be seen. Parameter values:
NMDA WGT=0.538 V. All other parameter values are the same as
for Figs. 3 and 4.

as before by a burst of spikes. A single EPSP has the
same amplitude as in the previous experiment and al-
lows us to directly compare the integration ofVm with
the AMPA summation in Fig. 3. The second EPSP am-
plitude is larger than the corresponding second EPSP
amplitude in Fig. 3. The same applies for the third
EPSP. The fourth and fifth EPSP amplitudes begin to
saturate. This saturation behavior is again due to the
decrease of the voltage difference (Vm-EION) across
transistor T4.

Figure 5 shows the amplifying effect of the NMDA
conductance in conjunction with an AMPA EPSP. In
Fig. 5A to C, the AMPA conductance was first activated
and then the NMDA conductance was stimulated with
decreasing inter-stimulation interval. In Fig. 5A, the
voltage-dependent NMDA conductance has hardly any
effect. As the interval decreases, the NMDA conduc-
tance turns on and a larger EPSP amplitude is seen. In
Fig. 5D the stimulation order is reversed. The NMDA
conductance is now ineffective.

In Fig. 6, we demonstrate the operation of the synap-
tic conductances in conjunction with the silicon neuron.
The operation of this neuron (without synapses) is
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Figure 6. A compartmental representation of the somatic silicon
neuron. The conductances in this soma model are Leak (leakage
conductance), KDr (delayed rectifier), Na (sodium conductance), Ca
(high-threshold conductance), KAHP (after-hyperpolarizing potas-
sium conductance). B–D: The silicon neuron’s response (Ca: intra-
cellular calcium concentration) to presynaptic AMPA and NMDA
bombardment. B: Stimulation of the AMPA conductance occurs
at a mean frequency of 200 Hz, stimulation of the NMDA con-
ductance at 50 Hz. The intervals of the synaptic spike stimuli are
Poisson distributed. The NMDA conductance sometimes acts as
an coincidence detector: see arrows on NMDA stimulation trace.
C: The two synaptic stimulation frequency values are switched.
The resulting spike frequency is lower than in B. After-spike hy-
perpolarization prevents the NMDA conductance from turning on.
D: Stimulation as in C with KAHP conductance turned off. After-
spike hyperpolarization is not prominent anymore and the membrane
potential repolarizes faster. Synaptic parameter values: as for Figs. 3
and 4. Relevant neuron parameters: resting potential=1.2 V, spik-
ing threshold=1.8 V, sodium reversal potential=4.0 V, potassium
reversal potential=1.0 V.

described in (Rasche et al., 1998). Figure 6A shows
a compartmental model of the silicon neuron.

In Fig. 6B–D, we show 500 ms recordings ofVm and
Ca, during synaptic bombardment of the AMPA and
NMDA conductances. Ca represents the intracellular
calcium concentration of a nerve cell and is given as a
voltage. In Fig. 6B, the AMPA conductance was stim-
ulated at a mean frequency of 200 Hz, the NMDA
conductance was stimulated at 50 Hz. The spike train
shows seven spikes of which five were elicited by a

NMDA stimulation. These five NMDA stimulations
are indicated by the arrows below the NMDA stimula-
tion trace.

In Fig. 6C, the AMPA and NMDA stimulation fre-
quencies were interchanged. Since the NMDA conduc-
tance was stimulated at a higher frequency, one might
expect an increased spike frequency from the amplify-
ing effect of the NMDA. But the spike frequency does
not increase. The reason for this behavior is that once
the membrane potential is hyperpolarized after a spike,
the NMDA cannot inject any current at low membrane
voltages. In Fig. 6D, the synapses were stimulated as
in Fig. 6C, but the KAHP conductance (responsible
for spike frequency adaptation via calcium concentra-
tion) was turned off. The membrane potential recovers
faster, and hence, we observe an increased spike fre-
quency.

4. Discussion

Our approach in designing analog circuits that capture
neuronal computation is phenomenologically based.
If a circuit shows a reasonable biological approxi-
mation in simulation and fulfils the important design
constraints (less silicon area, few parameters), we im-
plement it. The synaptic conductance circuits presented
here are one example of this philosophy.

On the other hand, an accurate simulation of for
example an alpha function in silicon is possible
(Dupeyron et al., 1996), but such a circuit needs more
parameters (and therefore more tuning) and silicon
area.

Here we have presented a simple silicon model of
the EPSC: a current mirror integrator with adjustable
gain suffices to approximate the dynamics of an EPSC
caused by an AMPA or NMDA conductance. We have
shown the effect of parameter TAU in Fig 2. Its effect of
modulating the decay time constant is not as prominent,
as we originally expected, because the decay times for
the EPSC are too short. However, it can be useful for
adjusting the dynamics of the EPSP when the neuron
operates in a network. The voltage dependence of a
NMDA conductance can be simulated by a differential
pair.

In terms of neuromorphic systems constraints we
achieved two important goals. First, the circuits are
compact: the AMPA conductance circuit consists of
only four transistors and a capacitance. The NMDA
conductance circuit consists of two extra transistors.
This small number of transistors allows many synapses
to be implemented on a single chip.
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Second, the operation of the conductances is set by
only few parameters. Apart from the weight parameter,
the silicon AMPA conductance circuit needs a single
parameter (TAU) to adjust the EPSP dynamics. The
silicon NMDA conductance needs only an additional
parameter (REF) to set the voltage dependence.

In the silicon NMDA conductance, the voltage de-
pendence is effective during the presynaptic pulse ap-
plication on T1; otherwise the differential pair is turned
off. Hence, the amplifying effect of the NMDA con-
ductance acts only during the presynaptic pulse (1 ms).
For that reason the NMDA EPSP amplitude in Fig. 5D
is low. If an AMPA stimulation follows right after a
NMDA stimulation, no amplification occurs. A more
realistic NMDA conductance should show such a am-
plification during the entire EPSC, which lasts several
milliseconds.

By moving the reference voltage REF, the voltage-
sensitive range can be shifted to a desired level. In
Fig. 5 the reference voltage is low, so that a sin-
gle AMPA EPSP can elicit a NMDA response. If the
reference voltage is high, a higher membrane volt-
age is required—for example, several summed AMPA
EPSPs—to evoke a NMDA EPSP.

In our experiments in Fig. 6, we have a somatic
model with an NMDA conductance. This model is
not completely biologically plausible, but we demon-
strate the successful integration of synaptic conduc-
tances with the silicon neuron (Mahowald and Douglas,
1991; Rasche et al., 1998). Figure 6B shows that the
lower-stimulated NMDA conductance can occasion-
ally act as a coincidence detector (K¨onig et al., 1996).
The membrane potential wanders between the resting
potential and the spiking threshold, and some of the
NMDA stimulations (see arrows) cause the membrane
voltage to jump directly above the spiking threshold.
The increased and decreased spike frequency in the
experiments in Fig. 6C and D can be explained by the
presence and absence of the KAHP conductance. In
Fig. 6C, the membrane potential stays hyperpolarized
for a while after a spike because the KAHP current
is turned on as long as the calcium concentration is
high (Rasche et al., 1998). During this hyperpolariza-
tion, stimulation of the NMDA conductance causes no
EPSP since the membrane potential is too low. Once
the membrane potential is repolarized, the NMDA con-
ductance amplifies again. In Fig. 6D, stimulation is the
same as in Fig. 6C, but the KAHP conductance was
turned off. As a result, the membrane potential repo-
larizes faster after a spike than in the experiment in

Fig. 6C. Hence, the NMDA conductance acts earlier,
and the frequency increases.

We have shown the performance of our circuit as
it stands at the moment. However, the NMDA circuit
needs to be improved to overcome the deficiency seen
in Fig. 6D and discussed in this section. We hope to
report on a improved circuit and compare it with bio-
logical data in a later paper.

The synaptic conductances have already been suc-
cessfully used in other applications. In H¨afliger and
Rasche (1999), the weight value on T2 of the AMPA
conductance can be changed according to an on-chip
learning rule (Häfliger and Mahowald, 1999) to emu-
late LTP and LTD.

A silicon dendrite (for example, Elias, 1993) en-
dowed with these synaptic conductances—in par-
ticular the NMDA conductance—could give rise to
multiplicative-like operations in a dendritic tree. In
computer modeling various models have been already
proposed (Mel, 1992a, 1992b; Durbin and Rumelhart,
1989). For a silicon realization a suitable model has to
be found.
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