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Abstract

We explore a neuromorphic robot vision controller which
actively extracts sparse information to control the basic
navigation behavior of a robot. We investigate the inter-
action of active vision and the robot’s behavior with the
objective of avoiding obstacles. A neural map recurrently
connected to an active attention pointer [3] uses edge-
enhanced visual data as input. The output of the neural net-
work is a population vector representation which contains
information about the location of potential obstacles and is
used to generate motor control signals. The neural network
architecture which we simulated numerically is suitable for
an implementation in analog VLSI technology.

1 Introduction

In the last 20 years anatomical, physiological and behav-
ioral studies have suggested three different views of what
happens where in the visual cortex [1].

The first view, the anatomical one, is that of ordering
visual areas in a hierarchy. The bottom of the (inverted)
processing pyramid is the primary visual cortex (V1) and
the higher order processes are then arranged in the broad
end of the pyramid. These upper areas are involved in pro-
gressively more specific processing of the various attributes
such as color, form and motion [12].

The second view, the physiological one, separates the vi-
sual processing into two streams. One stream is from the
M and the other from the P ganglion cells of the retina,
which project to the magnocellular and parvocellular layers
of the LGN. The P pathway is thought to carry high acuity
information about color, texture and form at high contrast,
whereas the M pathway is thought to carry low acuity infor-
mation about low contrast, motion and depth [6], [7], [13].

The third view, the behavioral one, differentiates be-
tween two different tasks of vision: In 1969 Schneider pos-
tulated an anatomical separation between the visual coding

of the location of a stimulus and the identification of that
stimulus [10]. He claimed that two separated cortical visual
systems exist. TheWhat-pathway specifies the processing
information for object identification and corresponds to the
dorsal stream. TheWhere-pathway specifies the processing
information for spatial localization and corresponds to the
ventral stream [11]. Subsequently, a separation of sensory
and motor system followed.

The separation into two visual pathways —What and
Where — without connection to the motor system goes
against the strong argument that studies of sensory and mo-
tor systems should not be separated, which brings us to the
question “Where does vision end and action begin?”. It is
possible that the rigid separation of brain areas into sensory
and motor areas is not useful for understanding the interac-
tion of vision and motor control. Instead, it could be that
a complex network of visuomotor modules interconnected
with other brain areas is concerned with sensorimotor con-
trol [2].

All three of these views demonstrate that as long as we
cannot solve the problem of interaction with the world, the
answer to the question of interconnection and communica-
tion between different brain areas remains open.

In trying to find an answer to the question of how ob-
jects must be represented and described we need to think
about the use of the representation in interacting with the
environment. We wish to explore the connections between
sensory and motor systems. A suitable substrate for the in-
vestigation of sensory-motor mappings is a robot operating
in real-time in a simple constructed environment. A quality
measure can be easily formulated from which it is possible
to assess the functioning and usefulness of the action ori-
ented perception.

2 Setup with a robot

In the experiment we use the mobile robotKheperade-
signed by K-team (EPFL) [8], [9]. The robot is connected
to a host computer via a serial port and the control program



is running under Matlab. The robot has a standard CCD-
camera on board tilted downwards at15� and with a field of
view of 60�.

We constructed asimple environment of 1.2m� 0.8m,
which contains red, yellow and blue painted wooden obsta-
cles of different shapes in various sizes. The walls and the
floor of the environment are white.

3 A basic navigation behavior using contrast
information

Underlying the design of the simple behavior arising
from edge detection lies the following observation, based on
the simple geometrical relationship between distance and
the vertical position of objects in the 2D CCD-images. If an
object appears at the top or bottom of the image, the object
is far away or nearby respectively. The potentially colliding
objects lie in an imaginary triangle delimited by the bot-
tom edge and the mid-point of the image. All objects, the
lower part (the ‘feet’) of which fall inside this triangle, are
potential obstacles for the robot. The objects outside this
triangle may only become relevant in the future, when the
robot moves forward.

For thebasic behaviordescribed in this paper, objects are
characterized as groups of edges by filtering, compressing
and threshold-normalization. First we filter the 210� 210
image along both axes, each with a one-dimensional differ-
ential filter with the kernel 1/10[ -1 -4 -5 0 5 4 1 ]. This
1D filtering operation is equivalent to a convolution of the
2D image with a 5� 5 Gaussian smoothing kernel mul-
tiplied by a 3� 3 Prewitt kernel [5]. Both filtered image
versions (along X and Y) are then summed. We keep only
the absolute value in order to detect positive and negative
contrast edges equally. In the next step we compress the
image data down to 25� 25 pixels by summing over 8� 8
sub-matrices. This data is then thresholded at one standard
deviation above the mean of the pixel values. The pixels
above this threshold are set to one — this operation has the
purpose of reducing very high contrast edges in order to pre-
vent these from dominating. Image compression is used to
allow the dimensions of the recurrent neural network to be
kept small and hence reduce computational cost. This pre-
processed binarized image is used as input to a 25� 25 map
of neurons recurrently connected to an attentionalpointer
[3]. A 1D model of such a pointer-map network is dis-
cussed in relation to general aspects of cortical processing
such as the relationship between localized and distributed
encodings and the attentional enhancement or attenuation
of the outputs of clusters of feature encoding neurons [4].
These types of networks have been successfully applied to
stereovision and coordinate transformation problems [3].

The input to the attentional pointer biases the processing
of the network to the most interesting region in the image.

For the case described in this paper, the network attends to
the lowest part of the input to the map, i.e. the ‘feet’ of the
nearest object.

3.1 The sensory recurrent pointer-map

The recurrent pointer-map is a neural attractor network
which consists of a 2D mapMxy of N x N neurons (whereN = 25 andx; y = 1; ::; N ), two horizontal pointer neu-
ronsPl (left) andPr (right) and two vertical pointer-neuronsPb (back) andPf (front). The preprocessed visual input to
the map is denoted bymxy and the attentional inputs to the
pointer neurons are denoted bypb, pl, pr andpf . The dy-
namic network equations are as follows:_Mxy = �Mxy +mxy+ �h(P+l cos �x + P+r sin �x)+ �v(P+b cos �y + P+f sin �y)� �Xxy M+xy (1)_P� = � P� + p� +Xx;y M+xyf(�) (2)

The� stands for the four pointer neurons (� = l; r; b; f )
and f(�) has to be replaced by(�h cos �x), (�h sin �x),(�v cos �y) and(�v sin �y) respectively. Neurons have an
input-output relationship containing a threshold nonlinear-
ity: X+ = max(X; 0). If for a given strength of re-
current inhibition set by the parameter� the strengths of
horizontal and vertical excitatory pointer-map connections
set by�h and�v are not too big, then by existence of a
Lyapunov-function every network trajectory converges to a
steady state [3]. The strength of vertical coupling is three
times stronger than the horizontal coupling and results in the
stronger weighting of horizontal edges compared to vertical
edges.�x = (x�1)�2N (�y = (y�1)�2N ) are angles that generate
a regular spacing of synaptic weights between map neurons
and the horizontal (vertical) pointer neurons.

Figure 1 shows a simplified picture of the network archi-
tecture. The 2D map of neurons makes excitatory sine and
cosine synaptic weightings (curves above and on the right-
hand side of the map) with the four pointer neurons, shown
as gray circles. The combination of recurrent pointer-
map excitation and global inhibition gives rise to a local
soft Winner-Take-All (WTA) mechanism. Neurons on the
map close to each other are effectively exciting each other,
whereas neurons further away are mutually competing via
the inhibition. The inhibitory inputpb = �5 to the back
pointer (pf = 0) is used as an attentional signal suppress-
ing edges in the back of the image. In Figure 1 the top part
of the obstacle is suppressed — it appears in lighter gray
than the bottom. This attentional biasing of the network
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Figure 1. Neural network architecture.

leads to a preference for the front or nearer part of the in-
put independent of the object position in the map (see also
Figures 2, 3 and 4). Note that the same effect cannot be ob-
tained by providing a positive (excitatory) input to the front
pointerPf , because given this excitation there would be the
emergence of spurious objects in the map in theabsence of
visual input (‘ghost’ objects). Inhibitory inputpl andpr to
the left and right pointer neurons can be used similarly to
bias attention and thus enhance the map output to the right
and left respectively. We make use of this option by direct-
ing attention to the left during leftward turns of the robot
and to the right during rightward turns. This improves and
speeds up the reaction to newly appearing obstacles in the
visual field.

The four pointer neuron activitiesP+� are used to read
out the coordinates (Cx; Cy) of the closest high contrast
edge, the winner of the competition between edges (shown
in Figure 1 by the circle on the map):Cx = 1+2(N�1)� arctan (Pr�pr)+(Pl�pl)+ (3)Cy = 1+2(N�1)� arctan P+f(Pb�pb)+ (4)

The coordinates (Cx; Cy) correspond to the center of ac-
tivity on the map in steady state given by_Mxy = 0 and_P� = 0.

From a sequence of images (Figures 2, 3 and 4) during
which the robot moved in discrete steps towards a group of
obstacles, we analyzed the coordinates (Cx andCy) in order
to find rules for navigation. The neural network was reset at
each step in order to receive stationary input for simplicity.
In each of the figures there are four subfigures. The top-left
subfigure corresponds to the original image from the CCD-
camera. The top-right subfigure contains the preprocessed

image, which is used as input to the neural network. The
bottom-left subfigure shows the output of the map of neu-
rons and the point with coordinates (Cx; Cy) is marked by
a gray circle. In the bottom-right subfigure, the dynamics
of the 25 neurons belonging to the 12th vertical line of the
map are shown (x-axis: timesteps, y-axis: neuron activity,
arbitrary units).
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Figure 2. Navigationstep 1.
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Figure 3. Navigationstep 2.
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Figure 4. Navigationstep 3.

3.2 The connection to the motor-map

To implement an obstacle avoiding behavior for the robot
we make use of the empirical triangle determining poten-
tial collision obstacles. If the output of the neural network
(Cx; Cy) lies in the upper ten horizontal lines of the map,
then the speed of the right and left motors are set equally,wr = 2, wl = 2 (arbitrary units, see Figure 5). If it lies
in the lower lines, then the speed of the motors is set to a
default value of one. If additionally the point (Cx; Cy) is in
the right hand side of the triangle, then the speed of the left
motor is set to zero, and conversely if it falls in the left hand
side of the triangle, then the speed of the right motor is set
to zero.

(wl, wr) = (2, 2)

(1, 1) (1, 1)

(0, 1)(1, 0)

wl = left wheel wr= right wheel

Visuomotor Mapping

Figure 5. Motor-map.

With these motor settings the robot moves straight for-
wards as long as no obstacle appears in the triangle. How-
ever, when an obstacle is present then the motor signals de-

crease. By selectively decreasing or zeroing the speed of
the left and right motors, the robot is able to successfully
avoid obstacles.
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Figure 6. Empty environment.

If there are no obstacles (Figure 6), the only line in the
image is the edge between the wall and the floor of the en-
vironment. The focusing of attention on this edge prevents
the robot from running into the wall of the environment, ac-
cording to the same avoidance behavior as in the presence
of obstacles.

Figure 7 shows the environment with the robot and a
sketch of the paths taken by the continuously moving robot
avoiding obstacles. Most of the time the robot does not run
into the obstacles. However, there are situations in which
when the robot, already close to a wall, tries to avoid an ob-
stacle, it bumps into the wall. The explanation is that the
robot has a dead zone in its immediate front. So if it turns
towards the nearby wall away from an adjacent obstacle,
the edge between wall and floor is already outside its visual
field. To avoid such situations the robot would have to have
short-term memory or richer sensory input.

Note that it would not make sense to compute the popu-
lation vector directly on the visual input image and connect
it to the motor-map, because only the lower parts of objects
are relevant. The attentional neural network computes the
necessary nonlinear focusing of map activity onto the lower
part of the input.

4 Conclusion

We have explored the interconnection of a visuomotor
system by implementing a particular neuromorphic repre-
sentation of objects in the environment, and we have gen-



Figure 7. Paths of the robot in the environment.

erated a reasonably competent, obstacle avoiding, simple
navigation behavior. We have shown with our experiment
that a recurrent neural pointer-map can allow a robot to
move around in a simple environment by producing an ac-
tive population vector representation of relevant visual in-
formation. The architecture of linear threshold neurons is
suitable for aVLSI implementation. The summing opera-
tion of the neuron’s output current can be implemented by
Kirkhoff’s current summing law and the rectification non-
linearity and synaptic interaction of neurons can be realized
by current mirrors [3].

We plan to improve the overall navigation skills of the
robot by designing additional basic behaviors which use fur-
ther sensory modalities together with additional instances of
the same types of recurrent neural networks with attention
pointers.
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