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ABSTRACT

When regularly spiking rat cortical cclls are per-
turbed by periodic inhibition, for set of positive
measure of specific ratios between stimulation and
self-osciliation frequency, the resulting spiking pat-
tern is chaotic. Contrary to earlicr speculations,
these connections do not desynchronize the network,
The optimal network performance is characterized
by the transition from local chaes to global chaos
dominance. When a phase-coincidence detection al-
gorithm is applied, quick convergence towards non-
trivial phasc patterns is observed. Distinet "sen-
sory” inputs to the network are reflected in localized,
input- specific differences of the observed attractors.

1 INTRODUCTION

Although considerable progress hag been achicved
in the past, the way the brain worlks is still far from
being understood [1]. Understanding the brain is in-
trinsically connected with questions such as how in-
formation is stored and propagated. The conncection
of neurons to a network clearly exceeds the complex-
ity of its elements. However, one may cxpect that
the behavior of the whele brain can be related to
the behavior of single functional clements.

Questions which recently obtained considerable
interest are whether or not brain activity can be
chaotic [2] and whether or not it may be useful to
use a phase-coding strategy te process the informa-
tion in the brain, instead of the frequency-coding
which sets up the usual model for artificial neural
networks, This issue wasg raised in a special news re-
port in science [3], where ongoing experimental work
of B.N.Yarhat [4] with the aim of building near to
biology neural networks was discussed.

In the present article, we report on the results
we have achieved into a closely related direction. In
our approach, ag a starting point instead of artificial
neurons we use experimentally measured response of
rat cortical neurons in a slice preparation. Using a
nonlinear dynamics approach, on the basis of this
cxperimental data it is possible to demonstrate that
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single cortical cells may respond with chaotic firing
patterns to periodic inhibitory stimulation [5]. In
arder to derive from the experimental facts the be-
havior of a network, we use a coupled map lattice
approach [6-8]. We are able to demonstrate that in
a network our inhibitory connections and not the
exeitatory connections lead to a coherent pulsing of
the phases.

When a neuton gets a large enough number of
temporally uncorrclated, small-size stimuli, it sud-
denly starts to spike in a periodic way. From the
point of view of nonlinear dynamics, the neuron has
undergone a Hopf, or, as in our case, a homoclinic
saddle-node bifurcation [10] and is now on a Hmit
cycle solution [9]j11]. By means of a Poincaré sec-
tion, which by now has become a widely applicd
procedure, the associated differential equation sys-
tem can be converted into a discrete map. This
leadds to a considerable simplification of the prob-
lem. In the case of a regularly spiking neuron, the
map displays a fixed- point behavior. Information
arrives at the newron in the form of substantial pack-
ages of stimuli; this amounts in the mathematical
picture to a perturbation of the limit cycle. In a
similar context (that of the embryonic chicken heart
cell beating} this point of view has been adoptod
with considerable success some time ago by Glass
and Mackey [11}. In our experiment described in
[5], slices of rat brain are investigated in an in vitro
preparation. The limit eycle behavior is triggerad
by the application of a constant DC current to the
cell. The perturbation is achieved by means of stim-
ulating exciting nerve fibers leading to the neuron
(this produces a synaptic input). The synaptic input
leads to an addition {excitatory stimulation) or a
subtraction (inhibitory stimulation) of a short-time
current, pulse of the duration of about 5ms to the
DC current. The response of the neuron upon an
incoming perturbation results in a modified phasc
at which the next spike appears. In the experiment,
this phasce dependence can be determined by using
the relation the equation [L1] [5] T +#, = & + Ty,
where Ty i3 the time between successive perturba-
tions, T is the perturbed cycle length, ¢, is the time
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after spiking at which the perturbation was applied,
and #, is the time after the spike at which the next
perturbation will appear (¢; can be viewed as en-
coding the length of the perturbed cycle). Exproess-
ing this relation in terms of phases is achieved by
dividing the equation by T, the cycle time of the
unperturbed limit cycle. This nmediately leads to
the equation

Pigpg=¢ +Q-T/Ty (mod 1), (1)

where (0 = T,/Tp is the frequency ratio between
the periodic perturbation and the periodic limit cy-
cle. This equation has the form of a circle map [14]
and should be interpreted as a Poincaré refurn nap
[11]. The reaction of the cell upon the stimulation
is cssentially contained in the last right-hand-side
contribution in this cquation, that can be called the
phase-response function [11]

gréd =t /1y = T/T. (2)

Map g is typical for the considered cell type, the
perturbation strength or the cell excitability and the
stimulation type. In our work, it will emerge that
the forms these phase return maps can assume are
sufficient to determine the behavior of the network.

2 POINCARE MAPS

For the stimulated ncuron, typically phase response
functions as shown in Figs. 1 a), b), emorge, for
the cases of inhibitory stimulation and for excitatory
stimulation, respectively (we show only the interpo-
lating functions of the experimental data points, for
more details see Ref. [12]).

e |

o

Figure 1: Phase response [unctions g : ¢ — 71" for
a) inhibitory and b) for oxcitatory stimulation. ¢,
d}: Corresponding bifurcation diagrams, stimula~
tion gtrength; &k = 0.2, (.4, respectively.

In the experiment, the coffects of isolated pertur-

bations are measurced in order to derive the phase-
responsc function. DBy iteration of the associated

578

Poincard maps P, predictions of the phases can be
made which should be observed upon periodic per-
turbation of the system, For the perturbed system,
periodic behavior, for example, i3 identified by a
set of observed phases of finite cardinality. It is
worth emphasizing that the phases that are obtained
from the application of the return map are not de-
termined by the phasc response map ¢ alone, but
also depend in an essontial way on the value of the
phase shift (0. This additive constant of Eq. (1),
wlich expresses the relation between self-oscillation
frequency of the neuron and the frequency of the
perturbation, has a strong influence on the gram-
matical structure of the system. An investigation
of the generated phases in dependence of 0 results
in a bifurcation diagram. The typical bifurcation
diagrams for our experiment {or both cases of stim-
ulation are displayed in Figs. 1 ¢}, d). Starting with
periodie behavior at small phase shifts, soon bands
ol phases arise which indicate irregular response of
the neuron upon the perturbation. Calculation of
the Lyapunov exponents {15] corresponding to the
bifurcation diagram shows that inhibition can lead
to chaotic spiking behavior. Recently, first numeri-
cal evidence [5] has been corroborated by analytical
investigations [13]. Tor excitation we found no ex-
perimental evidence of chaotic behavior, since under
biological conditions the phase return map has al-
ways found to be always invertible (these statements
are consistent with the phase response maps of Figs.
1 a}, b)).

The bifurcation diagram also depends on the per-
turbation strength, Our experimental evidence indi-
cates that within a broad range of biologically mean-
ingful perturbation strengths &, this dependence can
be modeled as

(}(k,(f)) = (.gk0(¢) - 1)"“ + ]: (3)

where g(k, ¢} is the phase response function at per-
turbation strength k, and gy, denotes the phase ro-
sponse function obtained for a chosen model per-
turbation strength ko, It has emcrged that for our
purpose it is not useful to separate perturbation
strength from the cxcitability of the targeted neu-
ron. We therefore chose for &, the perturbation
strength which leads to a maximal lengthening of
the inter-spike interval by a numecrical factor of 1.8.

3 UNIVERSAL RESPONSE

Yor the dependence of the bifurcation diagram on
the perturbation strength & we stress the following
facts (c.f. [13]): Within a broad parameter range of
the stimulation strength, the qualitative features of
the bifurcation diagram (i.e., its topology) remains
unchanged. This is a consequence of universality
propertics of the circle map class [9]. As a general
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tendency, valid for both types of stimulation, we ob-
serve that with increasing perturbation strength the
bands observed in Fig. 1 get narrower. Moreovor, as
a further consequence of circle map universality, the
exact interpolation function is irrelevant for topolog-
ical properties of the bifurcation diagrams. Seventh-
order polynomials and linearized versions of the in-
hibitory phase respense map shown in Fig. 1 a) yield
qualitatively identical results. It is this universal-
ity principle which makes indicates that our results
can be of a far-reaching significance. This interpre-
tation is corroborated by the observation that at
those thresholds above which our biclogical axperi-
ments cannot be continued (because the cells would
be destroyed), also in our mathematical deseription
abrupt changes set in: inhibitory stimulation ceases
to be able to gencrate chaos. At the same time, ex-
citatory stimulation acquires this ability.

It 15 furthermore of importance to compare the pre-
dictions made by the bifurcation diagram with the
results obtained from experiments of continued per-
turbations, to prove that under the given conditions
the assumption of a stable encugh limit cycle still is
valid. To this end, we stimulated the neuron period-
ically with inhibition at fixed values of Q, classified
the obtained set of phases as periodic or as chactic
and then compared these findings with the predic-
tions made by the bifurcation diagram. The agree-
ment between prediction and experiment was good;
it even improved when we included into our iterative
approach additive Gaussian distributed white noise
of the size observed in our experiment.

4 NEURON CONTROL

For phase-coded information, the question arises
whether the computational unit has the ability to
adjust the firing behavior to a given required peri-
odicity. On first sight, the usual controlling chaos
techniques which start off from a chaotic ”ground”
state and then apply control to ohtain the desired
periodicity [17], look very attractive, because, in this
way the phase return map could cssentially be pre-
served,  Biologically, such a fact implies that the
biophysical processes remain unchanged, with pos-
sible exception of the localized part where the con-
trol is applied. However, we found no evidence for
the occurrence of this mechanism. Instead, the ad-
justment is established in the following way. It is
possible to show that all periods oxist if the value
of the phase-shift Q is appropriately chosen. This
is a consequence of the fact that both phase return
functions are of circle map type (to our surprise, this
universality class is sufficiently large to include both
types of stimulation {13]). The required periodicity
then can be selected by switching to the appropri-
ate ). In practice, this is done via a change of the

frequency of the perturbing neuron.

5 NETWORK PROPERTIES

In order to investigate possible effects arising from
local chaos generated by inhibitory connections, we
investigated networks built up from our experimen-
tally measured Poincaré return maps. In 'purely’ bi-
ological networks of neocortical neurons, large-scale
ordering and coherence in firing over large distances
are observed abundantly. So far, this effect has
not been explained microscopically in a satistactory
manner, when starting from site maps. For some
time it was widely believed that excitatory stim-
ulation is responsible for the observed synchroniza-
tion effects [18]. However, evidence originating from
purely inhibitorically connected, but strongly coher-
ently periodically spiking cells in the thalamus, later
questioned this peint of view [19]. In the light of the
former belief, chaotically spiking newrons could be
speculated to be needed to break pglobal synchro-
nization obtained in this way.

We focused on small-scale networks with our cx-
perimental Poincaré return maps as site maps (net-
work size varying between 150-700 sites on a rectan-
gular My x Ma-grid) on which we put diffusive next-
neighboring coupling. In simple words, this model
describes a sifuation where (not necessarily spatially
localized) pair-stimulations dominate the networlk
activity and can be separated from the higher-order
background activity. From a mathematical point of
view, due to the fact that gencrally circle-type maps
lack the property of absolutely continuous invariant
measure, very few analytical statements can be ox-
pected. This is in contrast to networks of, e.g., fully
chaotic tent maps [8], or identically distributed en-
sembles of sigmoid neurons [16]. We therefore re-
sorted to performing numerical simulations, Our
networks were of; fully excitatory, fully inhibitory,
and mixed type. In the last case, we chosc 0.8 exci-
tatory and 0.2 inhibitory connections. The coupling
was characterized by an over-all coupling strength
kg, and random coupling strengths k; ; between site
maps and next neighbors, taken from a uniform
distribution over [0.5,1.5]. For the site maps, we
similarly chose 2 € [0,1]. The corresponding ex-
citabilities k (c.f. Eq. 3) were taken from the inter-
val [0.4,0.8], monitoring in this way rather strong
synaptic connections. As a consequence, for the
phases the update-rule

nn

. ko -
Nij = (1= kgki)Prj + 1—”;—|k1 S Puy ()

m,l

emerges, where IV; ; denotes the phase at site {4, 7},
P is the phase return map at the indexed site and
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| nn | denotes the cardinality of the set of all next-
neighbors of the site {{,7}. The coherence of the
overall network performance was measured by cal-
culation of the metric

)Z[ NJ

This coherency mcasure was usually applied after

= 5500 discarded initial iterations for ¢ = 100
consccutive time steps. §(f) = 0 indicates a return-
ing pattern; periodic structures in 4(t) are indica-
tors of periodicity on a larger time scale (possibly
connected with a small stochastic or chaotic compo-
nent, if zero is not reached). A comparison of the
results obtained for the three types of networks (see
Figs. 2) shows clearly that the cohcrent pulsing of
the network is due to the influence of inhibitory and
not of excitatory connections. ‘

8(t) = (M M) Nig(ta)) | (5)

Figure 2: Network coherency measured in terms of
d(t) for 100 time steps, for networks of a) full ex-
citatory, b) full inhibitory and ¢) mixed excitatory-
inhibitory type (sce text). Coupling strength ks =
0.8. Identical initial conditions.

6 CODING SITES

At this point, only the properties of sclf-arganization
of the network have heen active (no information ar-
riving from ocutside of the network, no learning rules
has been considered).  According to our findings
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Figure 3: Network coherency 4(¢) for input patterns
consisting a) of a fixed phase, b) of random phases,
for 100 time steps. Nearly periodic behavior emerges
in b) on much longer time scales. Coupling constant
k2 = 0.8. ¢) The time-averaged difference between
the coherency measures generated by different pat-
terns ¢ . = shows a clear minimum ag a funciion of
the (oupfvng strength ky. Identical initial conditions
for all measurements.

above, we cxpect that the inhibitory connections are
nceded for the emergence of a coherent reaction of
the whole networle onto arriving input. In order to
investigate this aspect, we connected our network
to different one-dimensional arrays of fixed phases,
chosen cither identically or uniformly distributed at
random. As shown in Figs. 3 a}, b}, the input pat-
terns generate additional fine-structures in the net-
work output. In order to numerically compare dif-
ferent network outputs, the difference between two

networks N, N can be measured by using the metric
S () = - Z | (Nigt) = Nog(8) |
(6)

In our case, we use this quantity to calculate the
deviations generated in a given network by different
input patterns. A time average of this quantity can
be used as an indicator of the ability of the network
to respond in a fine-tutied way to different input
patterns. It is natural to define the optimal per-
formance working condition of the network at the
nonzero minimum of §(k,), if it exists.

Asis shownin Fig. 3 ¢), a clear minimum emerges
just below a critical valuc ky, ~ 0.83. The latter

(M, M)t
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value coincides with the value at which the notworks
make a transition from plobally periodic behavior
with dominating importance of local chaos {LC}, ta
global chaos (GC).

If the phase is the important thing in the reaction
of the neuron, how is information contained in the
phase proceeded? The simplest way o think of this
process consists in a learning algorithm designed for
the detection of phase-coincidence emerged. That
is, neighboring sites which fire in-phase enhance
their connection strengths, among off-phage sites
the conncction strength is reduced.  Under this
phase-coincidence detection, formerly chaotic pat-
terns converge, for all applied input patterns, to pat-
terns whose highly nontrivial structures that arc also
time-dependent. By calculation of the local metric
distance between the converged patterns, it cmerges
that the network changes arc always confined to a
small number of network sites. The location of these
sites ig highly input specific and robust in time.

7 CONCLUSIONS

We started our study by measuring the reaction of
regularly spiking rat cortical neurons to periodic
perturbations. For excitatory and for inhibitory
stimulations, as a function of the parameter {1 ex-
pregsing the relation between self-spiking and per-
turbation frequency, we found nontrivial bifurcation
diagrams. For inhibitory stimulation, local chaos is
possible at high excitabilities. As the next finding,
using network simulations based on our experimen-
tally measured phase response functions, we showed
that it 18 the inhibitory connections which make a
coherent reaction of the considered network possi-
ble. Possible chaotic behavior of these connections
do not desynchronize, but rather help to synchro-
nize the network. We then considered the ability
of the network to store input patterns. Qur find-
ings are that different input patterns influence the
over-all network behavior in a non-trivial way. At
threshold ko, the network makes a transition from
local chaos to global chacs dominance. Just be-
low this value, the network is able to respond in
the most finc-tuned way to distinct input patterns.
This specific bechavior points out the importance
of higher-order nonlincar eflects for the explana-
tion how the brain works. We then implemented
a learning-like algorithin specified for the detection
of phase-coincidence. As soon as this algorithm is
applied, the neural network behavior converges to a
stable, complex pattern development: We observed
that when distinet input patterns are fed into the
network at identical initial conditions, the induced
phase changes are confined to a sparse sct of sites in
the network. This means that our network is able
to react in very input-scnsitive way.

Let us finally assume that connections exist which
lead from the sites at which these phases changes
occur, to other arcas of the brain where results can
be stored or used to trigger further actions. Let us
further assumce that a mechanism exists, by which
the converged connection strengths are reset. We
then have arrived at a theorctical picture of how the
brain could work on the basis of phase propertics,
In our view, it will be a worthwhile challenge to
investigate whether this point of view can be further
substantiated in experiments on networks of natural
nourons.

L.B. was partially supported by USA NSF DMS
960703, R.S by a KTI-grant {Phonak AG).
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