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Abstract

We consider biological neural networks of pyramidal cells in a quasistatic approximation. We argue that they can be
treated as a coupled map lattice of inhibitory and excitatory site maps, where both maps are derived from perturbation
response of rat neocortical pyramidal cells. Inhibitory site maps generate chaotic spike patterns on an open parameter set of

w xpositive measure R. Stoop, K. Schindler, L.A. Bunimovich, submitted , excitatory site maps are nonchaotic. Our network
simulations show that local chaos by inhibition may be used to synchronize cortical networks. q 1999 Elsevier Science B.V.
All rights reserved.

Although considerable progress has been achieved
in the past, the way the brain works is still far from

w xbeing understood 1 . Understanding the brain is
intrinsically connected with questions such as how
information is propagated, processed and stored. The
common assumption is that for this a description in
terms of spiking rates is sufficient. However, this
point of view has not been completely successful in
explaining the working of the brain. Moreover, it has
recently been found that interspike distributions of
neurons of the cat stellate cortex rather follow a
power-law than an exponential decay, implying that
average spike time and spiking rate may not be

w xdefined without problems 2 . Therefore, it has
w xemerged that phase-coding 3 could be of impor-

tance, especially for the explanation of synchroniza-
tion which is abundantly observed in the working
brain. In this context, two still unresolved questions

have received considerable attention. Firstly, can
synchronization provide arguments why the brain
uses excitatory as well as inhibitory connections
between neurons, and what relation exists between
synchronization and postulated chaos in the brain?
w x4

w xRecently 5,6 , we were able to prove that local
firing patterns of biological neurons may be chaotic
in the strict mathematical sense. Motivated to see the
influence of chaotic inhibitory stimulation on the
network level, here we investigate a ‘quasistatic’
network of cortical neurons, with ‘frozen’ firing

.rates. By this, we ideally mean to have: a -no change

.in the neuron’s own intrinsic firing rate, b -no change
of the excitability of the neurons over the time of
observation. In this situation, which is quite opposite
to a description in terms of firing rates, information
can only be encoded in terms of phase properties.

0375-9601r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0375-9601 99 00262-5
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We develop our quasistatic network model by dis-
tinction of three scales of input to the neuron:
. Ž1 strong input periodic of ‘small’ periodicity, caused

by direct stimulation by a primary partner neuron or
. .a field of synchronized neurons , 2 medium size

Žinput of longer periodicity or of chaotic nature,
caused by indirect input by means of, e.g., interneu-

. .rons, characterizing a structuralized environment , 3
Žsmall-size input diffuse, decorrelated input, obeying

the Gaussian law of large numbers, typically trans-
.mitted over many neurons . Expressed in terms of

the maximal applicable stimulation strength, these
inputs are in the ranges of 10y1,10y2 and 10y4 ,
respectively.

In the first part of the paper, we take into account
sources of the largest and of the smallest size. That
is, we consider the steady-state noise-driven neuron
that obtains input from a neuron of the same type. To
describe this binary system, we use new insight from
experiments with cortical neurons from the so-

w xmatosensory area of Sprague-Dawley rats 5 . A
nonlinear dynamics approach can be used to show
that single neurons may respond with chaotic firing
patterns to periodic inhibitory stimulation, but not to
excitation. Using the strong universality principles of
the circle map class, we are able to prove that our
experimental observations do not depend on artificial
conditions, but rather are ‘generic’ for this type of
experiment. In a second step, we also take into
account medium-size inputs. Their influence is
treated as a perturbation of dominant neuron-neuron

w xcouplings. That is, we end up with a lattice 7 of
binary interactions, on which medium-size input is

w xrepresented by diffusive coupling 8 . Using this
model, we show that the inhibitory connections are
responsible for enhanced pattern recurrence of qua-
sistatic networks of neocortical pyramidal cells. This
pattern recurrence, however, is only a weak form of
synchronization. For truly coherent spiking of the
network, i.e., for synchronization in the strong mean-
ing of the work, chaotic neuron sites are needed. We
see strong evidence that our conclusions extend be-
yond the model of quasistatic interaction considered
here.

It is well known that single spiking neurons can
w xbe described as electronic oscillators 9 . Unfortu-

nately, the integration of the resulting differential
equations amounts to a rather time-consuming job,

with a large set of constants to be adjusted. In our
mesoscopic description, we directly take the true
biological parameters into account by means of re-
sponse measurements of biological neurons. From
the point of view of nonlinear dynamics, periodically
spiking neurons are represented by limit cycle solu-
tions. Incoming information in the form of stimuli is
reduced in this picture to a perturbation of the limit
cycle. Going from the differential equation system to

Ž .a discrete map via a Poincare section considerably´
simplifies the problem. Our strategy is to provide
this map from experimental data, an approach that
has been pioneered by Glass and Mackey in their
description of the embryonic chicken heart cell beat-

w xing 10 . In our experiment, we took slices of rat
w xbrain in an in vitro preparation 5 . We concentrated

on simple spiking pyramidal cells, which are be-
lieved to be the cells essentially responsible for
neocortical tasks. The limit cycle behavior was trig-
gered by the application of a constant DC current to
the cell. The perturbation is achieved by means of

w xdirect stimulation 5 of the neuron, or, more re-
cently, by stimulation of exciting nerve fibers lead-

Ž .ing to the neuron this produces a synaptic input .
ŽThe immediate effect is an addition excitatory stim-

. Ž .ulation or a subtraction inhibitory stimulation of a
short-time current pulse of the duration of about 5
ms to the DC current, which leads to a modification
of the phase at which the next spike appears. From
the experiment, this phase can be determined using

w xthe equation 10,5 Tq t s t qT , where T is the2 1 s s

time between successive perturbations, T is the per-
turbed cycle length, t is the time after spiking at1

which the perturbation was applied, and t is the2

time after the spike at which the next perturbation
will appear. This relation can be expressed in terms
of phases. Dividing the equation by T , the cycle0

time of the unperturbed limit cycle, we obtain

P :f sf qVyTrT mod 1 , 1Ž . Ž .2 1 0

where VsT rT is the frequency ratio between thes 0

periodic perturbation and the periodic limit cycle.
This Poincare return map is a natural example of a´

w xcircle map 11 . The reaction of the cell upon the
stimulation is essentially contained in the last right-
hand-side contribution, the phase-response function

w xg:fs t rT ™TrT 10 . g can be determined from1 0 0

experimental single-pulse stimulation.
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The results from a large number of experimental
inhibitory and excitatory stimulations of neurons are
summarized in Figs. 1a and b, where we show the
interpolating functions fitting the experimental data

Žpoints data basis comprising more than 100 neurons
stimulated by inhibition and more than a dozen

.stimulated by excitation . Choice of individual neu-
Ž .rons up to ns15 at a single condition and stimula-

tion techniques made no further substantial discrimi-
Žnation necessary except for the occurrence of longer

refractory periods especially for excitation, whose
.effect will be discussed separately . It also emerged

that the dependence of g-functions on the stimula-

w xtion strength Kg 0,ko , where ko is the maximal
applicable stimulation strength, is of a very simple
form that allows the reduction to the prototypical

Ž .forms shown in Fig. 1 see below . According to Eq.
Ž .1 , we may iterate the associated P-maps to predict
the phases which should be observed upon a periodic
perturbation of the system. Periodic behavior, for
example, is identified by a set of phases of finite
cardinality. At this point, it is worth emphasizing
that the resulting phases are not determined by the
g-maps alone. The phase shift V also is of impor-
tance; its essential role is to determine the grammati-
cal structure of the system. Investigation of the

Ž . Ž .Fig. 1. Phase response functions g:f™T with superimposed data points from one neuron, for a inhibitory and b excitatory stimulation,
with stimulation strength Ks1. g expresses how the limit cycle responds to a perturbation at the time t after the last spike. The associated1

Ž Ž ..phase return map P cf. Eq. 1 determines at which phase the next perturbation occurs, given the phase of the old perturbation. Bifurcation
Ž . Ž .diagrams for c inhibitory and d excitatory stimulation, for Ks0.4. The phases from a periodic perturbation with a fixed phase-shift V

are drawn in the direction of the vertical axis. Regular firing corresponds to a discrete set of phases.
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generated phases in dependence of V results in
bifurcation diagrams. Typical examples are shown in
Figs. 1c, d. Starting with periodic behavior at small
phase shifts, soon bands of phases arise which indi-
cate irregular response of the neuron upon the pertur-

w xbation. Calculation of the Lyapunov exponents 12
shows that inhibition can lead to chaotic spiking

Ž w xbehavior first numerical evidence 5 has been cor-
w x.roborated by analytical investigations 6 . How can

the dependence on K be reduced to the g-prototypes
shown in Fig. 1? Our experimental evidence indi-

w xcates this dependence can be modeled for Kg 0,ko
as

g K ,f s g ko ,f y1 Kq1. 2Ž . Ž . Ž .Ž .

Contrary to inhibition, excitatory stimulation allows
w xon 0,ko only nonchaotic response. Otherwise, the

two stimulation paradigms have many features in
Ž w x. w xcommon cf. 6 : On the whole interval 0,ko , the

qualitative properties of the bifurcation diagrams are
equivalent, within one stimulation class, and compar-
ing the two stimulation classes. More precisely, the

Žtopological properties agree e.g., existence and or-
.dering of lockings , whereas the metric properties
Žmay strongly differ e.g., the V-locations of these

intervals, or the stability properties of the associated
.solutions . Responsible for this are the universality

properties of the circle map class, to which our
P-maps belong. The same fact also explains the
strong stability of results with respect to choice of

Žinterpolating functions in Fig. 1a, a polynomial of
third order for the middle part has been connected in
a differentiable manner with two hyperbolic branches,
which gives an excellent agreement with our experi-
mental results. However, even seventh order polyno-
mials yield comparable results. Under the change of
the interpolating function, the metric properties such
as the ‘thickness’ of the fractal and the ability to
produce chaos may be affected. This especially holds

.for the piecewise linear cases . In Fig. 2 we give an
overview on the situation. We observe that with
increasing values of K the bands of complex behav-
ior get narrower and Arnold tongues structures
emerge. It is worthwhile emphasizing that by a

Žsuitable choice of V which involves a change of the
.firing rate of, e.g., the targeting neuron , any desired

periodicity can be established. In the realms of our
quasistatic model, a corresponding effect can be
achieved by adjustment of the perturbation strength

ŽK alternatively, K can always be interpreted as an
.excitability . This is quite opposite to the usual

controlling chaos techniques which start off from a
chaotic ‘ground’ state and then apply control to

w xobtain the desired periodicity 13 . Finally, let us
reconsider the implicit assumption of a limit cycle
stable enough to recover after a perturbation before
the arrival of the next perturbation. We compared
our theoretical predictions with results from experi-
mental periodic stimulation and found good agree-
ment which even improved when we included into
our iterative approach additive Gaussian distributed
white noise of the size observed in our experiment.
In the experiment we observed stable periods up to
order 5–8.

What now is the role of chaotic inhibitory connec-
tions on the network level? In networks of neocorti-
cal neurons, large-scale ordering and coherence in
firing over large distances are observed abundantly.
For some time it was widely believed that excitatory
stimulation is responsible for the observed synchro-

w xnization effects 14 . However, evidence originating
from purely inhibitorally connected, but strongly co-
herent spiking cells in the thalamus, later questioned

w xthis point of view 15 . In the first case, chaotically
spiking neurons could be speculated to be needed to
break global synchronization obtained in this way. In
order to relate our results to the network level, we
consider a specific model of the network, which we
call ‘quasistatic’. In this model, the firing rates are
assumed not to change over the time of observation.
Pair-stimulations dominate the network activity and
can be separated from the higher-order background
activity by assuming allowance of distinction of
three levels of interaction, as has been outlined
above. In favor of the model we will argue below
that our description yields strong self-consistent re-
sults and does not require more specific assumptions.

For our cortical network in the quasistatic state,
we used our experimental P-maps as site maps on a
lattice. In these maps, the inputs of the strongest and
the weakest kinds are already taken into account.
Medium-size input is incorporated in the form of
diffusive next-neighboring phase coupling and medi-
ates between the site maps. We focused on small-
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Ž . Ž .Fig. 2. Possible response of the perturbed neuron, for a inhibitory and b excitatory stimulation, as a function of K and the ratio V

Ž Ž .. � 4between self-spiking and perturbation frequency Eq. 1 . Each color indicates a specific periodicity p g 1,..,9,G 10 se
� 4orange,yellow,green,..,red .
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Žscale networks network size varying between 500–
.700 sites on a rectangular M =M -grid . From a1 2

mathematical point of view, for our setting very few
Žanalytical statements can be expected this in con-

w xtrast to networks of, e.g., fully chaotic tent maps 8 ,
or identically distributed ensembles of sigmoid neu-

w x.rons 16 . We therefore resorted to performing nu-
merical simulations. Our networks were of the fully
excitatory, fully inhibitory, and mixed type,
parametrized by the percentage p of inhibitory con-
nections. The coupling was characterized by an over-
all coupling strength k and random coupling2

˜strengths k between site maps and next neighbors,i, j
w xtaken from a uniform distribution over 0.5,1.5 . For

w xthe site maps, we similarly chose Vg 0,1 . The
Ž Ž ..corresponding excitabilities K cf. Eq. 2 were

w xtaken from the interval 0.3,0.8 , monitoring in this
way rather massive coherent packages of transmitted
information. To incorporate medium-size input, we
require the diffusive coupling update-rule

nnk2˜ ˜N s 1yk k P q k P , 3Ž .Ýž /i , j 2 i , j i , j i , j k , lNnnN k , l

where P is the phase return map at the indexed site,
< <and nn denotes the cardinality of the set of all

� 4next-neighbours of site i, j . The first term of Eq.
Ž .3 reflects the degree of self-determination of the

� 4phase at site i, j , the second term reflects the
influence by nearest neighbours, where nearest is to
be understood in the sense of strongest interaction.

The pattern recurrence of the overall network perfor-
mance was measured by calculating the metric

Ž .y1
d t s M M N N t yN t N ,Ž . Ž . Ž . Ž .Ž .Ý1 2 i , j i , j 0

i , j

4Ž .

using t s5500 discarded initial iterations for ts0

100 consecutive time steps. In our numerical simula-
tions we found it reliable to quantify pattern recur-

Ž Ž ..rence of the network by Dsmin d t over onet
.hundred time steps, as a function of 1 the percent-

age of inhibitory site maps for different coupling
.strengths and 2 the coupling strength. Our main

result is that the coherence of the network is gov-
erned by the percentage p of inhibitory site maps,
i.e., inhibitory connections are responsible for a co-
herent pulsing of the network. Our second result is
that our model has self-consistency properties that

.should be required: a For too small perturbation
Ž .strengths k-0.1 , no effect can be obtained by

.increasing the percentage of inhibitory sites. b With-
out coupling, the network cannot be made coherent
Ža slight bending of the curve is due the focusing

. .effect of nonhyperbolicity . c Making all site maps
Žchaotic yields perfect phase coherence in order to

Ž .simulate the effect, we used Eq. 2 , but had to leave
.the biologically accessible stimulation range . These

results are summarized in Fig. 3a. The largest devia-
tions from the curves may be generated by the
random choice of the stimulation strengths in the

Ž .Fig. 3. Overview on the pattern recurrence for different phase-coupled networks, Eq. 2 , as a function of the range of local excitability K ,
Ž . Ž .the overall coupling strength k and the proportion p of inhibitory site maps. a d measured in terms of Dsmin d . From top, dashed:˜ ˜2 N tÑ

w x Ž . w xKg 0.001,0.05 too low! , couplings 0.1, 0.2; fully extending dashed line: Kg 0.3,0.8 , zero coupling; top pair of full lines:
w x w x w x ŽKg 0.125,0.25 , couplings 0.1, 0.2; fully extending full lines: Kg 0.3,0.8 , couplings 0.05, 0.1, 0.2, 0.4, 0.8; Bottom: Kg 1.2,1.4 i.e.,

. Ž . ² :both site map types are near to the threshold to potential chaos , couplings 0.1, 0.2. b Dependence of d on coupling strength k ,˜ t˜N 2Ñ

showing a minimum. Identical initial conditions were used for all measurements.
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network. They usually are within the range of D sd

0.02. A dependence on the specific topological struc-
ture of the network with fixed p exists, but is small
Ž .D -0.01 . The dependence of the pattern recur-d

Žrence on extended refractory periods which can be
.found especially for excitatory site maps is small.

Phase-coding of information means to assign in-
formation content to the phase at which a spike is
delivered rather than to the number of spikes. If such
mechanisms are useful, then they should be applica-
ble for pattern discrimination. That is, different in-
puts in our network should result in different net-

˜˜ ˜work states. Differences between two networks N, N
can be measured by a time-average of the quantity

Ž .y1 ˜˜ ˜d t s M M N t yN t . 5Ž . Ž . Ž . Ž . Ž .˜ Ý˜N 1 2 i , j i , jž /Ñ
i , j

Since the whole network responds spatiotemporally
Žsensitive towards applied patterns which means that

.initial differences in patterns are amplified in time ,
for faithful pattern representation the network is
faced with the problem of keeping the generated
differences under control. Since the ability of a
network to respond in a fine-tuned way to different
input patterns can be measured by a time average
² : Ž .d of d t , the optimal performance of the˜ ˜t˜ ˜N N˜ ˜N N

network as a function of the coupling strength k2

would be achieved at the non-zero minimum of
² :d , if it exists. We calculated d as a function˜ ˜t˜ ˜N N˜ ˜N N

of the overall coupling, k , to find the optimal2

performance of mixed networks. Fig. 3b shows that
there is indeed a sink, which to the right is bounded

Ž .by the value k f0.83 for ps0.2 . Careful exami-2 c

nation reveals that at k , the network undergoes a2 c

Ž .transition from local chaos LC to ‘turbulence’
Ž .global chaos, GC , as is seen in many examples of

w xcoupled map lattices 8 : Below k , some sites are2 c

periodic, while others are chaotic. Due to the cou-
pling, the instability of chaos promotes synchroniza-

Žtion of the maps, resulting in global possibly high
. Ž .order periodic behaviors of d t . In this regime, the

network reacts with periodic spatiotemporal patterns
in response to inputs. Above k the diffusive cou-2 c

pling is so strong that the network is in a ‘turbulent’
state. Periodicities break down, and the network is

no longer able to faithfully return patterns. We think
that the deviation of k from the expected value of2

unity is due to enhancement of pattern recurrence by
means of synchronization due to secondary effects.
This interpretation has been corroborated by the
calculation of the largest Lyapunov exponent of the
network. The discussed pattern recurrence properties
are valid under longer and shorter refractory period
conditions alike.

So far, the connection weights of the networks
w xwere randomly assigned k g 0.5,1.5 and then kepti, j

constant. One simple way to promote synchronisa-
tion is to have the k dynamic, enhancing thei, j

connection strengths between neighbouring sites that
fire in phase and reducing the connection strengths
between those that fire out of phase, similar to
Hebbian learning. When we imposed this phase coin-
cidence detection on our network, we observed that
after a short time-lap t the dynamical activity on ther

connection strengths had converged to temporally
stable patterns. Calculation of a pattern difference

˜˜ ˜Ž . Ž .d sN N t y N t N showed that the non-i, j i, j r i, j r

marginal differences are confined to a small number
of ‘coding’ network sites, and not distributed over
the entire network. The location of the coding sites is
highly input specific and the coding patterns do not
depend on the initially chosen phases. However, they
do to some extent depend on the chosen distribution
of frequency ratios V , reflecting in this way a
historical ‘state’ of the network. In addition to the
dynamic spatial structure of the coding sites, the
coding sites themselves express the applied patterns
in a temporal way which reflects a metricity of the
applied input patterns. When the site maps were
endowed with longer refractory periods, this led to a
certain degree of connectivity among the coding sites
which a considerable tendency towards synchroniza-
tion. These effects, along with possible aspects of
hardware implementation for computational and cog-
nitive tasks, are still under investigation.

In conclusion, we have determined the reaction of
regularly spiking rat cortical neurons to periodic
stimulation, and we investigated the consequences at
the network level. For excitatory and inhibitory stim-
ulations, we found nontrivial bifurcation diagrams;
for inhibitory stimulation we found chaotic response.
We developed the quasistatic network model, which
relies on our experimentally measured g-functions.
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Simulation results show that inhibitory connections
contribute most to recurrence of network states. Pos-
sible chaotic behavior does not desynchronize, but
rather helps to synchronize the network. By compar-
ing the effect of different input layers on a given
network, we found that our network is able to re-
spond to these in a fine-tuned way. This aspect was
further investigated by imposing a phase-coincidence
detection onto the network. Under its influence, the
change of the network patterns due to applied input
patterns is restricted to highly localized, input-
specific coding sites, with a potential for pattern
discrimination. The network model that we have
arrived at is highly biologically attractive and sug-
gests that phase-coding is possible and may be im-
portant for the processing of information by the
brain. We finally would like to a second, important
conclusion of our investigations: In quasistatic neo-
cortical networks of pyramidal cells, only weak syn-
chronization in the form patterns recurrence is possi-
ble. Local periodic site maps alone will directly lead
to chaotic, complex spiking networks, where the
latter observation has been confirmed by calculation
of the Lyapunov exponents of the network. Locally
chaotic site maps, however, are good candidates for
global synchronization, by which we understand con-

Žstantly globally periodic patterns there are good
.biological candidates for this role in the cortex . In

this way, a seemingly paradoxical situation arises
that locally chaotic site maps may generate global
periodicity, while periodic site maps generate global
chaos.
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