
Distributed Adaptive Control: Explorations in robotics andthe biology of learning�Paul F.M.J. VerschureInstitute for NeuroinformaticsETH-UZ, Gloriastrasse 32, Z�urichCH 8006, Switzerlandwww:http://www.ini.unizh.ch/~pfmjvpfmjv@ini.phys.ethz.chZ�urich, September 2, 1998Verschure, P.F.M.J. (1998) Distributed Adaptive Control: Explorations inrobotics and the biology of learning, Informatik/Informatique, 1:25-291 IntroductionBiological systems excel in their adaptive properties and the ability to develop appropri-ate behaviors to novel situations. In 1898 Thorndike reported one of the �rst systematicstudies on animal learning [18]. A food deprived cat was placed in a so called puzzle box.In order to escape from the box and acquire food it had to manipulate particular aspectsof this environment. Only through turning a button, pulling a string, depressing a lever,or pulling a wire loop would the escape latch be opened. Thorndike demonstrated thatthe time taken to escape from the box rapidly decreased over subsequent trails. In the�eld of robotics, despite the enormous advances in the technology used, no devices can befound which can match the behavior of the cats Thorndike studied 100 years ago. This canbe interpreted as an invitation to reverse engineer nature. Such an approach has a longtradition. It is only recently, however, that important advances have been made in thestudy of these forms of behavior and their related brain mechanisms to make it a feasibleoption.This paper will describe a synthetic approach towards the study of behavior, called Dis-tributed Adaptive Control (DAC), which attempts to model these phenomena from abiological perspective. DAC has been developed using large scale computer simulations ofneural models interfaced to real world devices. Before elaborating on DAC some de�nitionsand clari�cations on terminology will be provided.2 Learning: de�nition and terminologyAlthough learning has been intensively studied over the last century no appropriate def-inition is available. In general, learning designates relatively long lasting changes in the�The author thanks Peter K�onig for helpful discussions on this manuscript. Part of this project wassupported by NSF-SPP 1



Informatik/Informatique, 1998, 1:25-29 2interaction between an organism and its environment. Hence, in the study of behavioroperational de�nitions of learning, tied to speci�c kinds of experimental paradigms, areused. Before elaborating on the central components of the de�nition of learning a morefundamental question will be addressed; why do biological systems learn?The present investigation assumes that learning expresses aspects of biological systemswhich allow them to deal with unpredictability [19]. Two types of unpredictability aredistinguished: somatic and environmental. Somatic unpredictability results from the vari-ability in the realization of the body plan. For instance, the detailed properties of theoptics of an eye will vary over individuals. This property of biological systems constitutesa form of unpredictability which needs to be handled by a nervous system. For the presentdiscussion we will make the assumption that the mechanisms which allow a nervous systemto deal with somatic unpredictability are developmental. Environmental unpredictabilityis derived from the world in which biological systems have to function. This problem willbe ampli�ed by the extend to which the system under investigation is dependent on distalsensing, which is quite common for many organisms. The response of the organism to thissource of unpredictability will be called learning.Even though the distinction between developmental processes and those involved in learn-ing is not very clear, for our present discussion we will only address the issue of learning.Learning will be operationally de�ned in terms of the standard paradigms used to inves-tigate its properties; most notably classical and operant conditioning.Classical, or Pavlovian, conditioning [15] refers to learning phenomena where initiallyneutral stimuli, or conditioned stimuli (CS), like lights and bells, are through their simul-taneous presentation with motivational stimuli, unconditioned stimuli (US), like footshocksor food, able to trigger a conditioned response (CR). The success of this learning process ismeasured in terms of the probability of the occurrence of a CR after presentation of a CS.As to be expected the reality of animal behavior in the domain of classical conditioning ismore complicated than was initially anticipated [10]. In order to place the discussed mod-els in a proper context a number of additional properties of this type of learning need to beemphasized. Both at a behavioral and an anatomical level it is appropriate to distinguishconsummatory, or speci�c, components from preparatory, or non-speci�c, ones [8, 9]. Forinstance, in the case of eyelid conditioning, where a tone (CS) is presented with an airpu�to the cornea (US), the animal will display a number of responses. Next to the closing ofthe eye lid, which can be seen as speci�c to the US, non-speci�c behavioral or autonomicresponses can be observed; startle, freezing, withdrawal, changes in heartrate, breathing,or Galvanic skin response. The conditioned occurrence of these non-speci�c responses willfollow a di�erent temporal trajectory than the speci�c-responses. Non-speci�c responsesshow a fast acquisition (about 5 to 15 trials), while the development of the US speci�c CRtakes a much larger number of trials. The CR will ultimately express the timing of the US.A more general interpretation of the behavior revealed in classical conditioning is that itallows behaving systems to learn about correlations between CS and US occurrences. Toa certain extend one could speak of the substitution of the US by the CS through learning.This can be seen as a crude approximation of causal relationships in the world throughcorrelative measures [22].Operant, or instrumental, conditioning describes learning procedures in which the UR iscontingent on a particular action displayed by the organism. The earlier mentioned puz-zle box experiments of Thorndike can be taken as an example. The distinction betweenclassical and operant conditioning is still debated in the �eld of animal learning. In thework presented here we make the assumption that both experimental paradigms address



Informatik/Informatique, 1998, 1:25-29 3complementary components of one complete learning system.3 Distributed Adaptive Control: The working hypotheses
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Figure 1: The three levels of control distin-guished in the design of a complete learning sys-tem.

The modeling series of DistributedAdaptive Control (DAC) [27] exploresthe question how biological systemsacquire, retain, and express knowl-edge of their environment. In theevaluation of the di�erent models themethod of choice was the instanti-ation of simulated control structuresin real-world devices (robots). Thisapproach is seen as the instantiationof a research program of syntheticepistemology. In [21, 23, 24] themethodological and conceptual argu-ments for this choice are further elab-orated.The working hypotheses behind theDAC modeling series (illustrated in Fig-ure 1) can be summarized as follows:First, the basic competence of a behaving system to e�ectively interact with its envi-ronment is derived from a reactive control structure. By solely relying on prewired re-lationships between US events and URs it will reexively respond to immediate events.The triggering stimuli, USs, are derived from proximal sensors. URs can be given a moregeneral interpretation as reecting species speci�c behaviors. Second, as an adaptive con-troller the learning system will on one hand develop representations of states of the distalsensors which correlate with the events which activate the reactive controller. This elementreects aspects of the fast non-speci�c component of classical conditioning. On the otherat this level of control reexive responses can get further shaped, for instance in terms oftheir timing and duration. This aspect of adaptive control reects the slow speci�c com-ponent of classical conditioning. Third, through forming more general representations ofCS events and their relation to actions the learning system functions as a reective controlstructure. At this level of control \plans" of actions can be formed through developingsequential representations. A system which comprises of these three components will berefered to as a complete learning system. It needs to be emphasized that the three levels ofbehavioral control are not de�ned as independent modules. As will be illustrated with theexamples which will follow each level of control is strongly constrained by the precedingones.



Informatik/Informatique, 1998, 1:25-29 44 DACI and DACII: Evaluation of the hypothesis on theadaptive control structureThe DAC series started with a model proposed in [25] which was developed to solve somefundamental problems observed in models of so called reinforcement learning (i.e. [7, 17]),which are also widely used in the domain of machine learning (see [6] for a review). Thisclass of models has proven to be very e�ective in dealing with a wide range of optimiza-tion problems and capture elements of classical conditioning. Their successful applicationto real-world problems, however, has still been rather limited. These models have twodistinguishing features. In general, CSs are treated as prede�ned discrete sensory states.The actual learning process deals with the association of these prede�ned CS represen-tations with particular responses, URs. The development of these associations are underthe control of a global reinforcement signal derived from the presentation of a US. DAC,however, makes the assumption that an essential step in the learning process is the ac-quisition of CS representations based on the assumption of somatic and environmentalunpredictability. In other words, the actual properties of the world de�ning a particularevent have to be distinguished before any change to the behavior can be made. In addi-tion, the global signals employed in order to convey an error measure is considered toostrong and assumption. This does allow a formal treatment of these methods in terms ofgradient descent methods. Despite their possible role as a heuristic in interpreting brainfunction [16], however, this assumption cannot be validated presently. DAC makes themore minimal assumption of the strict locality of the learning process.
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In [25] it was shown that the assumption of the localityof learning could reliably reect the acquisition of CS-USassociations, using multiple CS modalities. In a next step,in order to �nd a behavioral validation of this proposal,a control structure was de�ned, called DACI, which wasapplied to a simulated robot in an obstacle avoidance andtarget approach task [27]. Figure 2 summarizes the basiccomponents of this control structure. In the �rst experi-ments a single CS modality was considered derived froma range �nder, while the USs were derived from collision(US�) and an abstract target sensor (US+). The reactivecontroller was de�ned by mapping the occurrence of anUS onto a speci�c action of the robot, approach in case ofan US+ and avoidance in case of an US�. An US eventalso induced activity in populations of units which reectan internal state (IS); called aversive in case of an US�and appetitive in case of US+. The projections of the proximal sensor to these IS pop-ulations conserved the topology present in the sensory sheet. Through the prede�nedinteractions of the IS populations (indicated with I in Figure 2) preference relationshipswere established on order to resolve conicts. Conicts, for instance, occur in case therobot �nds an obstacle in its path while following a gradient dispersed by a target. Theunits which ultimately drive the e�ectors receive inputs from the IS populations. Througha winner take all interaction one motor unit, and therefore action, is selected. The systemwould resort to its default behavior of moving forward, exploration, in case none of the ISpopulations were active. Learning proceeded by changing the connections between the IS



Informatik/Informatique, 1998, 1:25-29 5populations and the CS population. In this way associations between events transducedby the distal sensors and internal states could be acquired.In these experiments it was demonstrated that DACI could successfully act in an envi-
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Figure 3: DACI: Emergent behaviors of the adaptive controllerronment containing several obstacles and a single target. In addition, these experimentsdemonstrated the need for an activity dependent depression term in standard Hebbianlearning rules. This rendered a learning rule similar to the well known Oja rule [13] whichis able to extract the principal components from its input set. In this case this solutionemerged out of the analysis of the performance of a behaving device. In addition thesetests demonstrated that the relationship between observed behavioral regularities and theproperties of the control structure can in certain cases only be understood in case theproperties of the environment, the sensors and e�ectors of the behaving system, and thelearning history are taken into account. Figure 3 shows some forms of structured behav-ior displayed by the adaptive controller, such as wall-following and impasse resolution,observed in these experiments. These behavioral patterns, however, are not explicitlyrepresented by the control structure. The adaptive controller is only able to avoid or ap-proach in response to immediate sensory events. It does not have the means to representsequences of actions.In [1] the optimization technique of genetic algorithms was used to demonstrate the stabil-ity of DACI over a wide range of parameters. A next series of tests involved the comparisonand validation of the simulation results using real-robots [12]. In this case it was shownthat the learning properties of DACI were independent of the actual distal sensors used.In [30] DACI was further generalized to a larger mobile platform applied to a visuallyguided block sorting task. In these experiments explicit performance comparisons weremade between di�erent proposals on rules governing synaptic plasticity. It was shown thatso called \value based" learning rules [3] perform rather poorly in these types of tasks ascompared to the learning method used in DAC.In subsequent work [28] it was shown that the learning rule employed is prone to over-generalize the representations it acquires. This is a fundamental problem for any locallearning rule. Early CS-IS associations, expressed in the strength of the connections be-tween the respective populations, in many cases would dominate later classi�cations. Inthe earlier described example of wall following these properties of the learning rule couldinduce an overgeneralization of this behavior; circling around obstacles. It was subse-quently demonstrated that this problem could be solved while adhering to the assumptionof the locality of learning process. Next to the feedforward path from the CS populationsto the IS populations a recurrent inhibitory pathway between these populations was in-troduced. This extension was called DACII. As opposed to DACI, DACII would modify



Informatik/Informatique, 1998, 1:25-29 6the strength of the connections dependent on the deviation between actual CS events,transduced by the distal sensor, and CS events predicted through the IS activity. In [29]it is demonstrated that this extension to the original learning method, called predictiveHebbian learning provided the means to reliably capture CS representations and maintainthese representations over extended periods of time in both simulated and real robots.5 DACIII: Evaluation of the hypothesis on the completelearning system
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DACIII [20] was de�ned in order to explore the prop-erties of reective control. It constituted a �rst steptowards the speci�cation of a complete learning sys-tem. In [29] a more elaborate description of DACIIIis provided, including evaluations using both sim-ulated and real robots. The adaptive controllerused in DACIII is similar to DAC II. The reec-tive controller modeled by DACIII consists of sev-eral components (see Figure 4). The �rst componentis a transient memory bu�er (Short Term Memory,STM) in which CS representations and their associ-ated CRs are stored. Storage is conditional on theactivity of an IS population. CS and CR represen-tations are provided by the adaptive control struc-ture. Each segment of STM contains one CS-CRpair. Conditional to the occurrence of a rewarding event, such as �nding a target, thecontents of STM are stored in a permanent Long Term Memory (LTM). CS representa-tions, stored in LTM, are matched in parallel against ongoing sensory events. MatchingLTM segments engage in a winner take all competition. The winning LTM segment trig-gers the next action, and reinserts itself in the STM bu�er. In addition it will enhance theprobability that the subsequent segment will match with future sensory events, in orderto achieve chaining of subsequent LTM segments. This enhancement, however, is onlytransient.The performance of DACIII was compared to that of DACII using a simulated robot simi-lar to the one used in the �rst evaluation of DACI. In this comparison between DACII andDACIII the environment contained four targets each placed in a corner of a secluded space(Figure 5A). The gradient they dispersed only persisted over a short range. When a targetis found by the robot it disappears from the environment. A new target will reappear inits place as soon as another target is found. The system could explore this environmentfor 10000 time step. The gradients dispersed by the targets were removed after 7000 timesteps. After this time the system could �nd targets through either coincidence or the useof acquired behaviors. In this comparison DACII found 34 targets while accumulating 106collisions. For DACIII this score was 53 and 73 respectively. The traces of the subsequentlocations visited reects the behavior of DACII and DACIII during the period that thetarget gradient was absent. The most salient aspect of the behavior of DACIII is its abilityto acquire a stable behavioral pattern (Figure 5C). DACII, does not display this type ofstructuring of its behavior and visits all locations in the environment. These experiments



Informatik/Informatique, 1998, 1:25-29 7demonstrated that the complete learning system as implemented by DACIII is able to�rst, acquire appropriate representations of CS events, retain sequential representations ofCS-CR couplings, and express these representations in order to successfully negotiate itsenvironment.A: Environment
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DFigure 5: DAC: A comparison of DACII and DACIII during the recall period.6 ConclusionThe DAC series of models is by no means complete. For instance the properties of thespeci�c learning system, and many elements of a reective learning system have been ne-glected and are in the focus of our present activities. So far, however, DAC has shown thatthe basic assumptions behind this program su�ce to de�ne adaptive control structureswhich can capture aspects of advanced forms of behavior using strictly bottom-up prin-ciples. DAC has established a bridge between both the behavioral paradigms used in thestudy of learning and the neuroscienti�c explorations of these phenomena. In addition,it has made a number of suggestions which have shown to be of relevance to the �eldsof robotics [14], ethology [11], arti�cial intelligence [2, 4], and cognitive science [23]. Inour current research of DAC we have focused on two additional themes. On one handthe development of more appropriate technology to construct behaving devices, especiallythrough the use of more biologically realistic distal sensors (neuromorphic retinae) [5].On the other more biologically realistic models of the brain mechanisms involved in theprocessing of distal sensors have been developed [26]. These e�orts were undertaken in anattempt to facilitate a further validation of DAC at both the behavioral and the neurosci-enti�c levels.References[1] N. Almassy and P. F. M. J. Verschure. Optimizing self-organizing control architectures with geneticalgorithms: The interaction between natural selection and ontogenesis. In R. Manner and B. Mand-erick, editors, Proceedings of the Second Conference on Parallel Problem Solving from Nature, pages451{460. Amsterdam: Elsevier, 1992.[2] W.J. Clancey. Situated Cognition: On human knowledge and computer representations. Cambridge:Cambridge University Press, 1996.[3] G.M. Edelman, G.N. Reeke, W.E. Gall, G. Tononi, D. Williams, and O. Sporns. Synthetic neuralmodeling applied to a real-world artifact. Proceedings of the National Academy of Sciences of theUSA, 89:7267{7271, 1992.
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