Long-tailed interspike interval distributions from cortical neurons
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Abstract—

We investigate the distributions of interspike inter-
vals, both from the experimental and the theoretical
point of view. We show experimental evidence for the
fact that these distributions are long-tailed, and we
supply theoretical arguments for how such tails may
arise.

I. INTRODUCTION

Neocortical circuits are formed of recurrently con-
nected neurons. These neurons are of two basic types,
inhibitory and excitatory, and are reciprocally coupled
in monosynaptic or polysynaptic arcs. Their possible
roles have been the subject of many experimental and
theoretical analyses. Less attention has been given
to the effect of such recurrent coupling on the global
patterns of activity generated in extended recurrent
circuits of spiking neurons. Preliminary evidence from
combined optical and single unit recordings in the pri-
mate visual cortex indicate that single unit responses
occur within complex global patterns of activity [1].
However, the nature of this activity in large popula-
tions of neurons in not well understood. These inter-
actions are mostly studied by looking at neuron in-
terspike interval distributions. Common belief is that
these distributions are Gaussian or Poissonian, or, at
least, approximately so. Our point, however, is that
models of long-tailed distributions are more appropri-
ate. Our reasons to believe this originate from infor-
mation theoretic arguments, from measured interspike
distributions of in vivo experiments, and from models
based on in witro experiments. We begin by showing
how a-stable interspike interval distributions can arise
from information considerations of a biologically suit-
able network theory.

II. NETWORK THEORY

We consider a network consisting of the elements Fj,
Es, ..., Ey, which receive a common signal S, and, de-
pending on this signal, generate outputs O7, which are
all read by another element F (see Figure 1). It may be
that the outputs O only depend on certain character-
istics of the signal S to clarify this notion we introduce

the formal definition of signal characteristics. We say
that a set F of functionals defined on the space of sig-
nals is a set of signal characteristics of an element E;

if (i) £(S1) £ f(S2)Vf € F = 05 £ 05 and if (ii)

d d
3f € F st f(S1) # f(S2) = 05 # 02, Here, we
have used the notation that “d” above a relation sym-
bol means that the relation holds for the distributions
of the two objects. This allows for randomness in the
signal and in the response of the element. Henceforth,
we assume that the E; have a common set of signal
characteristics, which we denote by F.

Figure 1: The network geometry. Dashed arrows are
referred to in Section III.

We say that a signal S is stable in the signal charac-
teristic f € F if f(S) is time-independent. An abso-
lutely stable signal is stable in every signal character-
istic in F. Extreme examples are the cases where the
outputs do not depend on the signal, so that F may
consist only of a functional which maps every signal to
the same value, in which case every signal is absolutely
stable, and the case where everything about the signals
matters, so that F may contain a single invertible func-
tional. We suspect that biological neural networks fall
between these extreme cases, and that perhaps func-
tionals which measure local signal frequency are signal
characteristics. However, the exact nature of the sig-
nal characteristics and absolutely stable signals is, at
the present time, speculative, and all that will matter
for us is that absolutely stable signals exist.



Now we let S be an absolutely stable signal and con-
sider the element E, which receives and processes all
of the outputs OF. The importance of the absolutely
stable signals we have just introduced is that they are
the “constant” signals, since all of the information-
carrying features of signals are constant in them. We
would like E to be able to identify absolutely stable
signals; that is, to determine that the information in S
does not change. If E can do this, then the information
that it derives from the outputs OF must converge in
some sense over time. Furthermore, in the biological
system, this convergence should take place quickly. To
state this precisely, we must assume something about
how E derives information from the outputs.

In a biological neural network, the elements are
neurons and the outputs Ois are membrane poten-
tials. We make two critical assumptions about how
E derives information from the membrane potentials.
First, we assume that only the intervals between spikes
in the membrane potentials affect the output of E (this
partly specifies the signal characteristics of E). We de-
note the time between the n'® and (n + 1)** spikes in
the output Of by X;,. We assume that the X;, are
realizations of random variables with a common distri-
bution F', which is the interspike interval distribution,
and let S = 37 Xy5. Welet S, = >°7_ X, where
X; are random variables which also have the distri-
bution F. E can only approximate the distribution
of S,, by its empirical distribution, determined from
the S;,. Second, we assume that the output of E at
a time t depends only on the empirical distributions
of a,S, — b, that have accumulated up to the time ¢,
where a, > 0 and b, are constants that encapsulate
the processing E does to the interspike intervals. If
the network size k is large, as we expect it is in the
biological case (k may be on the order of 10%), then
these empirical distributions should approximate the
true distributions well.

Now we can state exactly what we mean by the con-
vergence of the information derived from the outputs
Of. If E can identify S as being absolutely stable,
then the empirical distribution of a,,S,, — b,, must con-
verge to a distribution G as n — oco. There are three
factors which affect the rate of this convergence: the
network size k, the tolerance of FE, and the signal S
itself. We assume that k is large enough and the tol-
erance is strict enough so that convergence of the em-
pirical distribution implies that the distribution must
also converge to G. The problem of relating F', G,
an, and b, provided that this convergence takes place
is the study of domains of attraction in mathematics,
and we state here only the results which concern us
(proofs can be found in [2]).

By its definition, F' must be concentrated on (0, 00),
and this implies that if G is a proper distribution not

concentrated at a point, then

(1) 3 afunction L which is slowly varying at co and
a constant a, 0 < a < 1 such that

" *L(x)

B i)

, T — 00

(2) the a,, must satisfy na,, *L(a,) — 1, and

(3) G must be a stable distribution with character-
istic exponent «

(1) implies that the tail of the density of the interspike
interval distribution F' must decay as z (@1, (2) re-
lates the a, to this decay, and (3) specifies the exact
form of G, up to its location parameters.

In a biological neural network, we know that this
convergence must occur quickly. Certainly, if the in-
terspike interval distribution is itself a-stable, then we
have the quickest convergence possible for a given net-
work size k and tolerance of E. However, we also
expect that for interspike interval distributions which
satisfy (1)-(3) and are close to being a-stable, conver-
gence should take place quickly. Since the interspike
interval distribution must be supported on (0, 0c), the
only way it can be close to an a-stable distribution is
to have a large skewness. This imples that the inter-
spike interval density should fall off rapidly towards
zero. The possible case where G is concentrated at
a point, however, only admits fast convergence if the
interspike interval distribution is a narrow and quickly
decaying peak.

Thus, we have shown that for absolutely stable dis-
tributions to be identified quickly in a biological neural
network, the densities of the interspike interval dis-
tributions should have power-law decaying tails and
rapid decay towards zero, or they should be sharp
peaks. Furthermore, we have established a direct rela-
tionship between the processing done by the neurons
on the interspike intervals and the shape of the inter-
spike interval distributions. We note that in the much
debated model of simple averaging of the intervals, cor-
responding to a,, = n~!, absolutely stable signals can
only be identified quickly if the interspike interval dis-
tributions are sharp peaks. If we require the a, to
be fixed in E, then E can only distinguish absolutely
stable signals by the three location parameters of G.

III. A MODEL OF NOISE-DRIVEN
NEURON INTERACTIONS

We now outline our model of interaction among noise-
driven quasistatic neurons [3], and show that it also
generates long-tailed interspike interval distributions.
This model is based on experimentally measured neu-
ron behavior. Neurons in the cortex receive input
from other neurons and, when the firing threshold is



reached, document this by firing an action potential
(the “spike”). Although synaptic output is released in
quantals, neurons receive inputs of different orders of
magnitude:

e Small-scale noisy input (e.g., from remote
synapses) drives the neuron towards regular
spiking with well-defined periodicity. The noise
may be considered as without structure; there-
fore, it may be represented by a constant driving
current.

e Strong input by next neighbors (neurons or a
group of synchronized neurons) arrives at the
neuron as a simple, ideally periodic, structure
in time.

o Medium-size interactions are neglected in this
picture. In a refined approach, they may be
treated by a coupling mechanism, for example
on a coupled map lattice.

Starting from this picture, we first mention that
upon constant current driving, the neuron indeed re-
sponds with regular spiking. In experiments with real
neurons, slices of rat neocortex are prepared for in
vitro recording (for details of the preparation see [4]).
The neuron then is supplied with a constant current [5]
which drives the membrane potential towards the spik-
ing threshold. Under these conditions, the cell starts
to fire regularly, on the basis of small membrane fluc-
tuations that have a drive towards the spiking thresh-
old. In the mathematical abstraction, the unperturbed
regular spiking behavior corresponds to a limit cycle
solution of the associated oscillator equations of the
cable model of the neuron [6]. Strong inhibitory or
strong excitatory inputs correspond to a perturbation
of this solution. This concept will lead us to a sim-
plification of the description of neuron spiking, which
can be directly based on experimental measurements.

In addition to the small-scale noise, information
from other neurons arrives in our model at the neu-
ron in the form of substantial packages of spikes, re-
ceived within a certain small time interval. (This type
of interaction is represented in Figure 1 by the dashed
arrows between the symbols E;, where the signal S is
the driving noise.) Experimentally, this perturbation
is performed by the stimulation of a synaptic connec-
tion to the neuron. To investigate the perturbed limit
cycle, we applied the techniques originally put forward
by Glass and Mackey [7]. We are interested in the
typical response of an intrinsically regularly spiking
neuron to synaptic perturbation by an also regularly
spiking neuron. The response of the targetted neuron
has strongly nonlinear characteristics. At fixed per-
turbation strength, the effect of the perturbation de-
pends on the phase ¢ (with respect to the neuron’s own

regular spiking) at which the perturbation is applied.
This property is revealed by the phase response func-
tion g(¢), which returns the quotient between the per-
turbed interspike interval length to the intrinsic (i.e.,
unperturbed) interval length as a function of ¢. The
phase response and phase return function are related
through

fa:d2=¢1+Q—g(¢) (mod1),

where the parameter 2 is the quotient of the intrinsic
interspike time T of the targetted neuron divided by
the interspike time T of the targetting neuron (for de-
tails, see [4, 8]). Taking into account how the phase re-
sponse function depends on the perturbation strength
K, the above equation can be seen as defining a cir-
cle map [9]. The functional dependence on K has the
form

go.x(#) = ga1(¢— 1)K + 1.

Investigation of the returned periodicities as a func-
tion of 2, K results in typical Arnol’d tongue struc-
tures [3], see Figure 2. For each periodicity p, there
are different Arnol’d tongues which comprise areas in
the 1, K parameter space which have solutions of the
same periodicity p. For the different areas, the stabil-
ity properties of the solutions, which can be expressed
by the Lyapunov exponent Aq g [10], are of interest.
Zooming in on the Arnol’d tongue plots reveals that
for inhibition, chaotic behavior is possible (Ao, x > 0).
However, large input strengths are needed to gener-
ate a chaotic response. Analytic investigations in [3]
reveal that this occurs on a nonzero set in the rele-
vant parameter space. Excitatory stimulations always
yield invertible phase return maps on the biologically
meaningful parameter space.

We now consider a given neuron and start, for con-
venience, with an intrinsic interspike interval of length
one. In order to mimic the interaction with not only
the strongest, but with every possible interaction,
we perform a perturbation average over the Arnol’d
tongue structure, with respect to the Lebesgue mea-
sure. We start, for convenience, with a unit interval
that is perturbed by a random number of randomly ex-
citatory or inhibitory perturbations of different pertur-
bation strengths. From this process, as in experiments,
an interspike interval distribution is generated. A typ-
ical result is shown in the left of Figure 3. As can be in-
ferred from this figure, almost perfect long-tail behav-
ior is displayed, along with the expected type of behav-
ior towards zero. The histogram even shows Lévy-type
behavior, with an exponent of & =~ 1.8. The histogram
was obtained by restricting excitabilities to a range of
strengths K € [0.005,0.255], measured in units of the
maximally applicable perturbation strength. These
working conditions are biologically reasonable and sig-
nificant for close-to-equilibrium states of the brain.



Figure 2: Arnol’d tongues obtained from inhibitory
interaction (a) and excitatory interaction (b).

Choosing higher ranges of excitabilities yields less evi-
dent Lévy behavior. This is partly due to the appear-
ance of a phenomenon which is widely known to the
experimentalists as the “second frequency.” This phe-
nomenon consists of an additional wiggle in the inter-
spike interval density, which obstructs the formation
of a clean power-law decay. In our approach, these
wiggles emerge in a systematic way, and a large (in
principle, infinite) number of such high order frequen-
cies should be observable, given a sufficient resolution
of the data.

IV. DISCUSSION

Our information theoretic analysis suggests that it
may be possible to determine features of neuronal in-
formation processing through measured interspike in-
terval distributions. Our model of noise-driven neuron
interactions also points to an as yet unrealized useful-
ness of interspike interval distributions, namely that
they may contain traces of extreme excitability. How-
ever, to make such inferences from experimental data,
there must be enough data so that the tail statistics
are good, and confounding factors, such as adaptation,
must be accounted for.

arb. units

arb. units

Figure 3: Long-tailed histograms based on experimen-
tal data. Left: Interspike interval distribution from
the model of Section III. Right: IST histogram recorded
from a complex-type neuron in cat striate cortex. The
histogram contains the neuron’s combined responses
to five, 4 sec. presentations of a spatiotemporally op-
timized sine wave grating at 40% contrast.
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