
CHARACTERIZATION OF A SILICON PYRAMIDAL NEURONC. RASCHE, R.J. DOUGLAS, M. MAHOWALDInstitut f�ur Neuroinformatik, ETH/UNI, Gloriastr. 32, Z�urich 8006The Silicon Neuron is an analog VLSI circuit that has the functional character-istics of real neurons. The circuit emulates many of the ion conductances thatgenerate action potentials and control the dynamics of their discharge. The ionconductances are modeled according to the Hodgkin-Huxley principles. The volt-age dependence of the ion channels is achieved by a transconductance ampli�erthat has a sigmoidal steady-state current voltage relation similar to that observedin biological active membrane channel conductances. The temporal dynamics ofthe conductances are emulated by a follower integrator. Intra-cellular calciumconcentrations are also emulated, and used to obtain spike frequency adaptationin various forms, similar to real neurons. The parameters of the various circuitscan be set so that the general Silicon Neuron circuit emulates a particular classof biological neurons. In this paper, we describe how the silicon neuron can becon�gured to emulate a neocortical pyramidal cell.1 IntroductionIn previous communications 1 we described the principles required to buildSilicon Neurons (SN) using CMOS analog VLSI technology. In this publicationwe present an elaboration of that SN that simulates the electrophysiologicalcharacteristics of cortical pyramidal neurons.The circuits of the silicon neuron approximate the performance of theHodgkin-Huxley 2 formalism for active neuronal membrane conductances.Transconductance ampli�ers form the foundation of the circuits used to em-ulate the voltage dependent conductances, while follower integrators providethe necessary dynamics. The interaction of separate circuits for activationand inactivation yields the approximately bell-shaped temporal forms seen inthe case of the sodium spike conductance (for example). This interaction ismultiplicative in conventional conductance simulations, but in the SNs theinteraction is modelled by subtraction.When appropriately con�gured, the SN exhibits electrophysiological be-haviour comparable with real pyramidal cells. Changes of conductances andkinetics of some channel conductances lead to action potential generation char-acteristics, such as spike frequency adaptation, similar to that observed in thereal counterparts. The distribution of interspike interval distributions is alsosimilar to those measured from real pyramidal neurons in vitro.The interest of SNs rests in their possible incorporation into large scalearti�cial neuronal networks. The simpli�ed neurons that are used in most ar-
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Figure 1: Analogy between the Silicon Neuron (SN) model and the Hodgkin-Huxley model(HH) of a channel conductance. Stage 1, time and voltage dependences. HH: Therate coe�cients �m and �m (�h, �h respectively) are voltage dependent. These are used todetermine �m and m1 (�h, h1). Box mi represents the activation curve (hj for inactiva-tion) depending on time and voltage. i and j are exponents, usually between 1 and 4. miand hj are normalized, ranging from 0 to 1. SN: Time dependence is implemented by a fol-lower integrator (time element, grey box labeled tau), which low-pass �lters the membranevoltage. The TAUM (TAUH) parameter determines the time constant of �ltering. Voltagedependence is implemented by the transconductance ampli�ers (activation and inactivationelement, grey boxes labeled m and h). The KNEE parameter determines the threshold foractivation of the conductance. SAT determines the strength of (in)activation. Stage 2,combination of activation and inactivation. HH: Activation and inactivation are mul-tiplied to yield the bell-shaped temporal conductance (see graph total activation vs. time).SN: The two processes are currents subtracted by the current mirror right after the h-element(not in grey box). To obtain an optimal subtraction the parameter ratios MSAT/HSAT andMKNEE/HKNEE should be approximately equivalent. Stage 3, calculation of outputcurrent. HH: Total activation is multiplied by the term g(V � E) to yield the membranecurrent. SN: The 'total activation' signal controls a membrane conductance transistor whichis part of a current mirror (conductance element, grey box labelled G). The membrane cur-rent 
ows from the common source voltage E, which represents the reversal potential of theion, to the membrane capacitance (not shown).



ti�cial networks have an explicit output activation function. In real neuronsthe output activation function is not explicit. Instead, it depends on the statesof the various somatic and dendritic conductances. Because the SNs emulatethe electrophysiological behaviour of real neurons, they also inherit the proper-ties that their output activation function need not be explicitly speci�ed. Thisproperty is a useful step towards constructing arti�cial nervous systems thatuse more realistic principles of neural computation than do existing electronicneural networks. Moreover, the use of more realistic neurons improves the in-terface between engineering applications of neural networks, and the biologicalexperiments that provide our understanding of such networks.2 MethodsThe present SN, which emulates the electrophysiology of the soma, consists ofa somatic compartment and a simple dendritic load. The soma comprises �veactive conductances and one passive conductance: INA: sodium spike conduc-tance, IKD: potassium spike conductance (delayed recti�er), IAHP: calcium-dependent potassium conductance, ICA: calcium conductance, ILEAK: pas-sive leakage conductance. We use the term ion conductance rather than ioncurrent, because the conductance re
ects the average of many single ion cur-rents that 
ow across the nerve cell's membrane. The aVLSI ion conductancesare modelled according to the Hodgkin-Huxley-formalism 2. The principles ofthis formalism are dissected into its elements, and each of them is electricallymimicked by a subcircuit. Fig. 1 shows the analogy between between theHodgkin-Huxley (HH) conductance model, and the aVLSI emulation. Compu-tation of the channel conductance occurs in three stages, indicated from rightto left. In real neurons the conductance (vs. time) is often bell-shaped. Thisform is achieved in the SN by subtracting a fast activating current from a slowinactivating current. Fig. 2 shows the circuit of the basic actionpotentialgeneration mechanism that includes the sodium (INA), the potassium (IKD)and the leakage conductance (ILEAK). Fig. 3 shows the circuits that emulatethe calcium conductance, the calcium concentration element, and the calciumdependent potassium (AHP) conductance. We assume that calcium enters thesoma via a high threshold calcium conductance, so that calcium enters onlyduring the ocurrence of a spike, and not simply during sub-threshold membranedepolarisation. The concentration element ([Ca]) tracks the concentration ofintra-cellular calcium. The AHP conductance is activated by rising calciumconcentration, and by lengthening the interspike interval, is responsible forspiking frequency adaptation.The Silicon Neuron circuit is fabricated in a double-poly 2-�m CMOS



process on a MOSIS tinychip 1 3. The subcircuits that emulate the various ioncurrents have a modular design, so that various conductance circuits can beincorporated or excluded from designs, as necessary. Furthermore, the currentsthat are included in any particular design can engaged or disengaged accordingto their parameter settings.
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Figure 2: The analog circuitry of the basic spike mechanism. The horizontal wire carriesthe membrane potential (VMEM). The attached capacitor (CMEM) models the membranecapacitance. The boxed arrow on the left indicates a external current injection source.Sodium (Na) spike conductance. When external current injection drives membranepotential above NAONKNEE (representing �ring threshold) a positive feedback loop (viam(Na) and G(Na)) drives the VMEM voltage to near ENA. Soon thereafter, inactivation(through th(Na) and h(Na)) occurs by subtracting current as explained in Fig. 1. Potas-sium (K) spike conductance. After onset of INA, the slower IKD turns on, and actsas a negative feedback loop, which pulls VMEM back down towards EK. Leakage (Leak)conductance. The follower-connected transconductance ampli�er models the passive be-haviour of the neuronal membrane. ELEAK is the resting potential, and GLEAK sets theleak conductance.
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Figure 3: Calcium and calcium-dependent potassium (AHP) conductances and the calciumconcentration element. The horizontal bottom line represents membrane voltage (VMEM).Calcium (Ca) conductance. Subtractive principle as described in Fig. 1. Every timea spike occurs calcium enters the cell through a high threshold calcium conductance. Thecalcium conductance also in
uences the spiking pattern. Calcium concentration ([Ca])module: A scaled copy of the calcium conductance drives the gate of the p-transistor andemulates calcium in
ux into the cell. This 'calcium' charge is stored on a capacitor. The fol-lower provides calcium decay due to e.g. bu�ering. CATAU determines the time constant ofcalcium decay. CAPREF sets the calcium 'resting concentration'. AHP conductance: Thewide-range-input transconductance ampli�er (m(AHP)) senses calcium concentration volt-age and determines the degree of activation of IAHP. The equilibrium potential in G(AHP)is tied to the same potassium equilibrium potential as in the basic spike mechanism. TheAHP conductance constitutes a feedback loop (via [Ca]) that acts on a time scale of severaltens of milliseconds. See also Fig 7.3 ResultsFig. 4a shows examples of spike trains elicited by intrasomatic constant cur-rent injection. The arrow in the �rst plot shows where current injection starts.The lower trace in each plot represents the intra-cellular calcium concentration.A subthreshold current injection (0.37 nA) causes a simple, sub-threshold,charging response. A suprathreshold current injection (0.58 nA) causes an ac-tion potential discharge, and calcium enters the cell every time a spike occurs.The calcium decays exponentially by a constant rate. The range of current in-jection values (0.37 nA - 2.3 nA) shown is similar to range used in experimentson real neurons.Spike frequency adaptation can already be seen in Fig. 4: the interspikeintervals are short at �rst, and then increase in duration with successive in-tervals until a steady state discharge frequency is attained. Fig. 4b showsa family of output activation functions, or frequency-current curves, for thisneuron. The rightmost curve shows the response for the �rst interspike inter-val. The remainder of the curves show responses for successive intervals (up to
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Figure 4: Response of the neuron to increasing current injections. a. Membrane voltageand calcium concentration in answer to 5 current stimuli. Noise in this recording arisesmainly from quantization e�ects in the digitizing oscilloscope. b. Current-frequency curvesin response to 12 current stimuli, showing saturation and spike frequency adaptation.the eigth interval) as the neuron undergoes adaptation. For the �rst intervalthe current discharge relation has an initial steep slope and then saturates.The saturation is due to retarding e�ect on the occurence of the next spike,due to the post spike hyperpolarising conductance change (caused IKD). Theslopes of the successive curves decrease as the adaptive conductance (IAHP)increases.As in real cortical cells, the frequency of the �rst interval saturates atabout 300 Hz for a current injection of about 2.5 nA. Later intervals (e.g. 5and more) saturate at about 150 Hz. The current discharge relation for the�rst interval crosses the second at high current inputs, an e�ect also seen inbiological neurons. This crossing is due to stronger hyperpolarization by thedelayed recti�er following the broader �rst action potential, than later actionpotentials in a train.Fig. 5 shows the interspike interval distribution for 1000 intervals as aprobability density histogram. In a) noise-free constant current was injectedand intervals we recorded after the neuron had adapted to its steady-state rate.In a purely deterministic simulation, a constant input stimulus would result ina constant interspike interval, and an interval distribution localised to a singlebin. This is not the case in SN emulations, because like real neurons, the
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Figure 5: Interspike interval histogram of 1000 intervals with a bin size of 0.1 ms. a.Constant current injection. b. Noisy current injection.overall performance of the SN is subject to noise in the physical componentsfrom which it is constructed. This noise leads naturally to variability in theduration of the interspike intervals. When Gaussian noise is added to the inputcurrent to emulate the form of typical dendro-somatic currents, the variabilityof the interspike intervals increases (b).The detailed trajectories of the membrane potential during individual ac-tion potentials and the interspike intervals can be adjusted via parameter set-tings applied to the various ionic circuits. Fig.6 shows the response of theneuron to the injection of pulses of 1nA amplitude and 5 ms duration, forvalues of the parameter KDTAUM. KDTAUM in
uences the dynamics of thepotassium spike current. When the value of this parameter is small, IKDturns on late and so permits a broad spike width and consequently a largecalcium in
ux. For larger values of the paramter, IDK turns on earlier, thespike becomes shorter, and the calcium in
ux is reduced. A very high value ofKDTAUM results in premature activation of the potassium, so that the spikeamplitude is attenuated.A further example of parameter manipulation is shown in Fig.7. In thiscase the e�ect of manipulation of IAHP is illustrated. Two spike trains andtheir related calcium concentration are shown. Both these trains were evokedby the same current amplitude. In a) IAHP is turned on with the maximumconductance value. As anticipated, the IAHP activation slows down the �ringrate and calcium concentration appears to saturate early, because the rate ofcalcium entry is restricted by adaptation of the spike rate. In b) the IAHP isswitched o�. No spike frequency adaptation occurs and calcium concentrationsaturates at a higher level, because of the elevated rate of calcium entry.
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Figure 7: E�ect of IAHP. Two spike trains elicited by the same stimulus current amplitude.a. When IAHP is turned conductance is large, spike frequency adaptation occurs, and cal-cium concentration saturates early. b. IAHP conductances is turned o�, no spike frequencyadaptation and calcium saturates late.4 DiscussionThe Silicon Neuron presented here o�ers a compact emulation of the Hodgkin-Huxley channel conductances in CMOS aVLSI. The parameters of the circuitscan easily be set to emulate the electrophysiological performance of pyramidalneurons, and smooth neurons (data not shown) of cortex. So the SN could beused to emulate the anatomically de�ned networks of cortex. However, the SNhas about 25 parameters and it is a time-consuming task to tune all of themto get the SN to spike. Therefore we require additional adaptive mechanismsto bring the SN into a stable spiking mode automatically. We are developingalgorithms that bring the neuron into its spiking regime and also trim its spikefrequency adaptation 4.
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