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Chaotic family with smooth Lyapunov dependence
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A smooth dependence of the Lyapunov exponent is proved for a nontrivial family of chaotic maps. The
approach that is taken demonstrates the importance of Markov partitions in connection with the thermody-
namic analysis for dynamical systems.@S1063-651X~97!01306-8#

PACS number~s!: 05.45.1b, 05.70.2a
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Simple one-dimensional maps are often the key for und
standing the behavior of complicated physical systems@1#.
This, for example, is the case for the different routes
which systems are driven from simple to chaotic behav
@2#. In many cases simple maps already provide a g
model for the physical process@3#. It is widely believed that
in the parameter region where chaotic behavior is possi
the Lyapunov exponent@4# shows a nonsmooth dependen
on the control parameter. As a typical example of suc
behavior we mention the logistic map beyond the accum
tion point of period doubling@5#. More recently, similar ex-
amples have been discovered in connection with the di
sional behavior@6#. There it has been shown that simil
effects for tentlike maps on grids of unit cells lead rath
directly to a fractal,Weierstrass-like, dependence of the dif
fusion coefficientD on the family parameter~which, in this
case, is the slope of the map!. In our contribution we show
that the parameter dependence can be of smooth nature
family is appropriately chosen. The work explains implicit
why the parameter dependence is nonsmooth for differe
chosen families. As a consequence of our approach it
emerges that it may not be necessary to simulate cha
systems by a large number of numerical orbits, once
internal~topological! structure of the map is known. Powe
ful analytical tools allow a thorough investigation of the sy
tem without simulations.

The example for which we apply our analytical approa
is the bungalow-tent map. This map is of special importa
on its own because of the fact that it is the simplest nontriv
linearization of the quadratic parabola~see Fig. 1!. Using
appropriate parameters, the nonhyperbolic character of
parabola can be carried over to this linearized model, in s
of the linearization. In our contribution, for a specifical
chosen one-parameter family of bungalow-tent maps,
Lyapunov exponents are analytically calculated. A smo
dependence of the Lyapunov exponent on the control par
eter is found. The analytical results are compared with
merical orbit simulations that yield identical results, fro
which, however, no statement of smoothness can be deri

The bungalow-tent maps constitute a two-parameter f
ily of fully developed maps that have a four-piece linea
increasing graph, with a symmetry along a vertical li
throughx50.5. A two-parameter representation is obtain
551063-651X/97/55~6!/7763~4!/$10.00
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from the coordinates that fix the location of the right corn
point P of the map. The general map then obtains the
scription

f ~x!:55
b

12a
x for 0<x,12a

b21

a21/2
x1

b21

2a21
for 12a<x,0.5,

symmetric for 0.5,x<1,

~1!

where 1.a>0.5 andb/a20.5.1 to ensure ergodicity~see
Fig. 1!. In an earlier paper@7# on the behavior of the bunga
low tent map, a one-parameter family was considered
pinning the corner point P on the vertical line
l5(a50.75,y). The dependence of the Lyapunov expone
from the parametery was shown to be characterized by se
eral phase transition effects in the form of discontinuities
the Lyapunov dependencel(y). Because the size of th
Lyapunov exponent is one measure of the unpredictability
the motion, this means that the unpredictability itself var

FIG. 1. Graph of the bungalow-tent map. The corner pointP
determines the structure of the two-parameter family. Two fami
of bungalow-tent maps are indicated by the direction in which
corner point is moved when the control parameter is changed.
7763 © 1997 The American Physical Society
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in a rather erratic way with the control parameter. For ap
cations ~e.g., for chaos control@8#!, a smooth dependenc
instead may be desirable. In this work we chose a differ
family by varying point P along the diagonal. For this
choice, smoothness can be achieved, as we will show be
Both families are displayed in Fig. 1 for convenience. F
our choice of the family, the equation of the map is given

f ~x!:55
a

12a
x for 0<x,12a

a21

a21/2
x1

a21

2a21
for 12a<x,0.5,

symmetric for 0.5,x<1.

~2!

For all values of the control parametera, the corner point
P is a fixed point. This fixed point is unstable since for
parameters of the family the point is embedded in an
stable two-cycle orbit~despite the fact that the map is n
differentiable atP). We can see this by inspection of th
symbolic partition of the phase space of the map~see Fig. 2!.
The partition is Markovian@9# for all values of the paramete
in our family. This means that under the iteration of the m
the borders of the partition are mapped onto old bord
again, which guarantees that the properties of higher-o
iterations can be extracted from the partition of the first
eration in a simple way. In the partition, the different regio
can be described by symbols, that allow a description
terms of symbolic dynamics@10#. The transfer matrix then
describes the transitions among the symbolsA, B, C, and
D upon the iteration of the map. In this way, the informati
on the structure of the existing periodic orbits is reflected
the transfer matrix@11#. Of special importance is the fact tha
in our family the topological structure of the transfer mat
is the same for all values of the control parametera. This is
reflected in the simple form of the transfer matrix that
valid for the whole family

FIG. 2. Markov partition that remains topologically invariant
our family of bungalow-tent maps. A symbolic description is ind
cated.
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T51
12a

a

12a

a

12a

a
0

0 0 0
a20.5

12a

0 0 0
a20.5

12a

12a

a

12a

a

12a

a
0

2 . ~3!

Our analytic solution of the Lyapunov exponent depende
uses this transfer matrix by combining it with thermod
namic formalism methods. In the thermodynamic approa
the elements of the transfer matrix are raised to the powe
the ~inverse! ‘‘temperature’’ b, which yields a generalized
transfer matrixT(b). From this matrix, the~Helmholtz! free
energy of the systemF(b) is obtained as the logarithm o
the largest eigenvalue@12#. From the characteristic equatio

x422S 12a

a D bS a20.5

12a D b

x22S 12a

a D b

x350, ~4!

the largest eigenvalue is obtained as

m~b!50.5@0.25~r !2b12~r !b~z!b#1/210.5$@0.25~r !2b

12~r !b~z!b#1/2~r !b10.5~r !2b12~r !b~ t/s!b%1/2

10.25~r !b, ~5!

FIG. 3. Dependence of the Lyapunov exponent on the param
a. In our family, the dependence of the Lyapunov exponent on
parametera is smooth.~a! Analytic results and~b! results from
simulations.
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wherer52111/a, s512a, t520.51a, andz5t/s. The
free energy then emerges as

F~a,b!5 ln @m~b!#, ~6!

from which the Lyapunov exponent is obtained via the f
mula @13#

l~a!52
]F~a,b!

]b U
b51

. ~7!

This formula can be derived either directly from a monov
riate thermodynamic formalism@13# or via the generalized
approach@14#. As general references for the thermodynam
approach to dynamical systems we would like to ment
Refs.@12–14#. For our family we obtain the result

l~a!520.25r ln~r !2$0.25@0.5~r !2ln~r !1uln~r !

1uln~ t/s!#%/@0.25~r !21u#1/22†0.25„@0.25~r !2

1u#1/2r ln~r !1~r !2ln~r !1uln~r !1uln~z!

1$0.5r @0.5~r !2ln~r !1uln~r !1uln~z!#%/@0.25~r !2

1u#1/2…‡/$@0.25~r !21u#1/2r10.5~r !21u%1/2, ~8!

whereu52rz. The result describes a smooth function ofa,
which is also reflected in the plot shown in Fig. 3. A dire
simulation yields the identical dependence. We empha
that the Lyapunov exponent could also have been calcul
by using the invariant measure of the map. From our
proach, the invariant measure can be calculated analytic
from the eigenvector associated with the leading eigenva
r51 at the temperatureb51. We illustrate this fact in the
plot shown in Fig. 4, where we compare the invariant den
calculated from direct simulation and from the eigenvec
method. Even more information can be extracted via
thermodynamic approach. Also the different spectra of s
ing indices can directly be evaluated from the free energy
the spectrum of length scalesS(«) for our family we observe
a cutoff of the entropy function at nonzero entropy, on o
side of the entropy function~a ‘‘stopping point’’!. Whether
there is a phase transition interpretation@15# of this point still
is unclear. Summarizing, we reemphasize the fact that in
example the partition and therefore the topological proper
of the map are preserved throughout the family. This is
deeper reason for the smooth dependence of the Lyapu
exponent on the control parameter. While the topologi
structure remains, the metric and the probabilistic charac
istics of the map undergo changes that, themselves, ca
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related to phase transition phenomena. Fora→1, we detect a
behavior of the right piecewise constant natural measure

r~a!;ua21ug, ~9!

whereg521, so thatg can be interpreted as a critical ex
ponent@16#.

In conclusion, in the present work we were able to pres
an explanation for an observed smooth behavior of
Lyapunov dependence for a nontrivial family of chao
maps. Implicitly, the argument also gives insight into ho
nonsmooth families emerge. The usage of the thermo
namical formalism for the analytical investigation of chao
maps has been outlined, where the obtained nontrivial res
clearly demonstrate the power of this tool.

FIG. 4. Natural measure of the map.~a! From simulations@in
~a1!# we show the invariant measure for a specific value of
control parameter; in ~a2! we plot the shifted density
ra(x)85ra(x)2ac, c.0, for the whole family.~b! Results from
the eigenvector associated with the largest eigenvaluem51 at
b51.
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