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Introduction 

Conventional mechatronic systems tend to be highly 
specific with the steps required to perform a task built-in 
to the machine’s design. This makes the system efficient 
at performing its intended function in optimal conditions, 
but inefficient at dealing with unexpected situations. The 
main reason that most mechatronic systems deal poorly 
with unexpected events is that the predefined information 
in the system is too specific. A better strategy in some 
applications is to allow the system to independently 
determine the best way to perform the task, given the 
ability to interact with its environment and analyse the 
success of its actions. Of course, providing such meta- 
knowledge to a mechatronic system must have practical 
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limits defined by the learning time required and the cost 
of failed trials during the learning process. 

This paper describes the development of a six-legged 
robot that learns how to walk as quickly as possible with 
minimal initial knowledge regarding appropriate walking 
actions or terrain type. The main focus of the project was 
on the learning processes involved rather than the details 
of dynamic real-time robot control systems. Given the 
means to control each of its legs, the robot was designed 
to work out sequences of leg movements that allow it to 
walk without falling over. To counteract the possibility 
that the robot could avoid falling simply by standing still, 
the incentive to learn how to walk was given by an in- 
built “curiosity”. The competing directives affecting the 
robot can be summarised as follows. 

Directive Means to achieve directive 
Walk 
Avoid pain 
Improve 
Compete 

Repeat a leg movement sequence forever 
Don’t repeat “painful” leg movements 
Try new random leg movement sequences 
Repeat the last sequence of leg movements 
a little faster 

100 

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore.  Restrictions apply. 



System Architecture 

Earlier studies in this field have been undertaken by 
Brooks [ 1,2] with Genghis, a walking robot based on his 
Subsumption Architecture. His work was heavily process 
based, where each module in the architecture was 
responsible for some action: raising legs, lower legs, etc. 

The distributed leaming architecture developed for 
Robbie (Figure 2 )  directly models the competing 
directives which drive the robot's actions. It is layered in 
a similar way to the IS0  networking reference model. 
The lowest layer is the physical realisation of the robot 
(sensors and actuators), while the higher layers deal with 
progressively more abstract learning concepts. The 
directives can be seen as the vertical alignment of 
different blocks in the architecture. 
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Each module is run as a separate independent process. 
Asynchronous message queues provide for interaction 
between modules. The architecture is organised so that 
feedback paths progress directly up the layers. Feed 
forward paths, on the other hand, are regulated by special 

conflict resolution blocks. These blocks accept multiple 
inputs from one or both adjacent layers and produce a 
single feed-forward output, ie. the block makes a decision 
about the most appropriate input or combination of inputs 
to feed forward. 

The interactions between the components are what 
causes the system as a whole to "learn". By designing 
some of the complexity of the system at the architectural 
level, the individual components can be made much 
simpler than might otherwise be possible in a leaming 
system. 

The distributed leaming architecture presented here 
represents one way of dealing with the given learning 
problem. When defined in this way, the distributed 
leaming architecture is simply a high-level algorithm. 
Thus the algorithms used for the individual components 
are obviously affected by the overlying architecture. 

Conceivably, if the learning architecture was 
sufficiently refined with each component being defined as 
a separate leaming architecture then eventually each 
component would become trivial to implement. However, 
this is not the case, as this would imply that at some stage 
there was a trivial way of learning an arbitrary piece of 
knowledge. In practice, the leaming architecture needs 
to be just complex enough to learn the task at hand - at 
least one of the components must contain some in-built 
knowledge about the task. Extra complexity lends extra 
adaptability, but it must be contained in order to maintain 
practicality. This is the difference between learning in 
the pure sense (learning with no predefined knowledge) 
and learning in a practical application (some predefined 
knowledge without compromising adaptability). 

Analogues in Other Systems 

Many recent developments in learning systems use 
other (often natural) systems as a basis, for example the 
human immune system [3]. While no existing system 
was consciously used to develop Robbie's learning 
architecture, two analogies suggested themselves when 
the topology of the design had been finalised: 

0 The structure can be seen as a simplified version of 
the human nervous system, in which the physical 
assets correspond to the nerve endings and the 
message queues represent the transmission of 
messages along the nerves. 
The striking similarity of the system architecture to 
the IS0  networking reference model reflects the 
similarities between hiding complexity in learning 
and remote data access. 

101 

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on June 15,2010 at 23:47:21 UTC from IEEE Xplore.  Restrictions apply. 



Learning Algorithms 

Several novel algorithms were developed to enable the 
robot to learn how to walk. They deal with two 
potentially conflicting goals: avoiding falling over and 
maximising walking speed. The algorithms were 
designed with practical performance in mind rather than 
learning in the pure sense, however prior knowledge of 
the learning problem was kept to a minimum to ensure 
adaptability over a wide variety of different terrains. 

Avoiding Falling Over 

A rule-based strategy was used to enable the robot to 
learn how to avoid falling over. It trials different 
combinations of leg movements and records the results of 
these trials. In this way, after a certain number of trials it 
has amassed sufficient knowledge of the terrain to move 
its legs in ways that prevent it from falling over. 

The speed of the learning process is improved by using 
the symmetry of the robot to generate tentative rules. 
Dubbed Symmetry Learning, this technique allows the 
robot to access (up to) four times as much data as is 
available directly from its sensors from a single trial. 

The method by which the extra data is generated is 
illustrated in Figure 3. When the robot receives data 
about the result of a trial, it is stored with an “actual” 
priority. The data is then mirrored about the horizontal 
and vertical planes to generate three more rules with 
priorities of “high”, “medium” and “low”. The lower 
priorities indicate that a rule was generated by the use of 
symmetry and should be considered as a tentative rule 
only. Any new information received in a later trial that 
conflicts with an existing rule is only stored if it is of an 
equal or higher priority than the existing rule. Using this 
technique, the robot Ieams (increases the number of ruIes 
available) very quickly by infemng its own tentative rules 
from the available data Even if the tentative rules are 
incorrect, later trials will eventually weed out the invalid 
rules. 

Two different methods were used to modify the robot’s 
actions in response to data gained from the stored rules. 
The first of these involves randomly altering the sequence 
of the leg movement times where the robot found leg 
configurations that caused it to fall over. The second 
method notes which leg actions most likely caused the 
robot to fall over and ensures that the same actions are 
not repeated on the next attempt. Neither of these 
methods require the robot to learn what needs to be done; 
it was deemed that from a practical viewpoint the 
simplicity of these algorithms did not warrant extra 
learning software. 

Leg Pain 
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~ 

Fig 3. Horizontal and vertical mirroring 

Maximising Walking Speed 

The approaches to maximising the robot’s walking 
speed fall into two broad categories: 

A simple proportional reduction scaling 
transformation which instructs the robot to do what it 
did before, but a little bit faster. 
Non-linear transformations which seek to normalise 
and eliminate redundant periods (times when none of 
the robot’s legs are moving). 

The non-linear transformations are useful for rapid 
performance improvements, while the proportional 
scaling is used for fine-tuning performance when the 
robot is already walking near its maximum potential 
speed. 

Note that although these approaches were found to 
work well, neither of them involve the robot actually 
learning the appropriate actions to take. The knowledge 
of what to do in order to walk faster is predefined in the 
algorithms used. 

Another strategy has been proposed but not yet 
implemented where the robot creates lists of rule “cells” 
for each leg which contain statistics about the robot’s 
performance over the previous time period. New and 
improved walking sequences are generated by combining 
the rule cells of most merit for each leg. 
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Simulation Software 

A simulation of the robot was developed to test each 
learning algorithm as it was implemented. The 
simulation display contains a representation of the system 
architecture and allows easy tracing of data and process 
states. It deals exclusively with the learning components 
of the system; the control of the robot was dealt with 
separately. 

Robot Controller Architecture 

The main aim in the design of the robot controller was 
to keep the cost and development time required to an 
absolute minimum. An architectural diagram is shown in 
Figure 4. 

bobot Controller Architecture 

Data cable' 
(25 Ines) 

Robot interlace board 

Fig 4. Robot controller architecture 

Both the host computer and robot controller computers 
are standard PCs running MS-DOS. The host PC uses a 
single RS-232 serial port connected to a controller PC 
which interfaces to the robot via two standard 8-bit 
parallel ports. 

The interface protocol between the host and controller 
computers is a simple fixed packet length serial protocol. 
No error checking or packet retransmission facilities were 
implemented due to time constraints. 

Robot Controller Software 

The software for controlling the robot performs the 
following tasks in real time: 

Pulse Width Modulation (PWM) position-based 
control of twelve servo motors 

0 Continuous polling of six foot sensor switches and 
four belly sensor switches 

0 Interrupt-driven RS-232 serial communications with 
the learning software computer 
Logging of system operations to disk 
Calculation of performance statistics 
Display of current status on the computer screen 
Processing of user keyboard commands 

The core of the controller is a timer interrupt routine 
which times the pulses for controlling the servo motors. 
The pulse width is between about 1 and 2 ms for each 
servo motor, with a new pulse being required for each 
servo motor every 25-30 ms. After each motor has been 
pulsed once, the sensors are polled and their status 
updated. This gives a polling rate of about 40 Hz, which 
is more than adequate for this application. 

At the same time as this, the interrupt-driven serial 
communications library receives and sends packets when 
instructed to by the learning software computer. Both the 
communications queue and the keyboard are polled 
periodically and actions taken depending on any new 
inputs received. 

Although the learning software deals only with 
walking forwards, the controller software also provides 
for backwards walking and turning left and right. 

Robot Construction 

The physical robot is about 300 mm long and has a 
total mass of about 1 kg. It is constructed mainly of CNC 
milled 3 mm acrylic. There are three major structural 
components: 

0 The chassis is a rectangular sheet of acrylic which 
provides a platform for the servo motors and interface 
PCB. Large sections are cut out of the rectangular 
sheet to minimise weight. A narrow acrylic spine 
fixed with double-sided adhesive tape runs the length 
of the robot to provide additional stiffness. 
Servo mounts provide a connection between the fore- 
aft and raise-lower servos on each leg. 

0 The legs are single pieces of 3 mm thick acrylic 
directly mounted to the leg drive servo-motor. 

Standard RC servo motors are used to actuate each of 
the two-degree-of-freedom legs. Each of the six legs has 
a microswitch mounted in the foot. Microswitches 
mounted on the torso enable the robot to sense when it 
has fallen down. 
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Testing Performed 

The robot was tested in offline mode, using the 
simulation as well as online with the real robot. The 
simulated mode tests revealed how the algorithms and the 
robot (simulation) performed under deterministic 
conditions, while the field tests showed how the 
algorithms and the physical robot performed in reality. 

Real robot testing was conducted on the following 
types of terrain: 

Flat ground (carpet) 
Inclined wooden plane (6 degrees and 14 degrees), 
uphill and downhill (see Figure 5) 
Corrugated plastic roofing with a peak-to-peak height 
of about 20 mm and a wavelength of about 75 mm 

Fig 5. Robbie climbing an inclined plane 

The following data was collected for each of three 
separate test runs for each algorithm and the results 
averaged: 

The position (and hence the velocity) of the robot at 
regular time intervals 
The number of times the robot fell down during the 
run and at what times the falls occurred 

The robot was also run in tripod gait on each type of 
terrain, yielding the maximum possible speed of the robot 
as a reference value. 

Results and Analysis: The R-Rating 

To provide a consistent way of comparing the 
performance of different algorithms on different terrains, 
an index called the R-rating was developed. Its 
formulation is as follows: 

R, = i o o L . 5  i = I..N 
n tall$ 

where: n falls Inpod - number of falls per metre for tripod gait 
v , , ~ ” ~ ~  - average velocity over course for tnpod gait 

5 - scamg factor 
nfails - number of falls per metre 
v,, - average velocity over course 
N - number of tests performed 
R, - performance index (R - rating) of test i 

The results are normalised to the results obtained from 
manually running the robot in the tripod gait on flat 
ground, which is assigned an R-rating of 100, assuming 
one fall per metre (the robot must fall to learn). The 
robot walking in tripod gait on flat ground managed a 
sustained speed of 8.2 c d s .  

It was found that the pain avoidance leaming 
algorithms aided by symmetry and the nonlinear 
performance improvement transformations gave the best 
performance on all terrain types. The leamed gaits gave 
a maximum speed of about 2 c d s  (R-Rating = 13) for 
flat and corrugated terrain, and about 1 cm/s (R-Rating = 
2) on the 6 degree uphill incline. The 14 degree incline 
proved too steep to climb at all. On flat ground, the best 
non-learning algorithm registered an R-Rating of 4 
indicating that there is a three-fold performance 
difference using the leaming algorithms. The robot was 
able to attain maximum speed when walking without 
falling over in less than 60 seconds. 

Comparison With Other Robots 

Robbie’s performance is most readily compared with 
the Genghis robot developed by Rodney Brooks at MIT. 
Both use pain feedback information and are designed to 
walk as quickly as possible. Genghis is fully autonomous 
and has some extra features such as variable leg lifting 
and force balancing to allow it to walk over uneven 
terrain more easily. Both take around 2 minutes to reach 
a maximum speed of between 2 and 3 cmls. However, 
because Robbie was constructed very rapidly and with 
limited financial resources, its performance was 
certainly well below its full potential. It was also lacking 
in the navigational and force balancing features. 
Overcoming these limitations should be a relatively 
straightforward development process and should result in 
a significant increase in performance. 
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Applications 

There are obvious applications for the architecture and 
algorithms developed for Robbie to autonomous walking 
robots in inhospitable environments andlor in situations 
where the terrain is unknown. The learning components 
can be readily extended to include extra sensors, path 
planning and navigational control. The economic and 
rapid construction of Robbie (total cost about AUD400) 
also opens up possible commercial applications in 
education and entertainment. 

Limitations, Conclusions and Further Work 

The distributed learning control system and the design 
process used were found to have many advantages during 
the course of Robbie’s construction, including: 

The problem was able to be decomposed easily into 
small, manageable pieces. 
The architectural layout was suggested naturally by 
the competing directives in the problem definition. 
The horizontally layered structure bound by vertical 
directives imposed a degree of order on the design 
without imposing excessive restrictions. 
A simulation was created which reflected the 
performance of the robot remarkably well long before 
the real robot was built, enabling off-line simulation 
and testing of algorithms. 
Each module could be implemented relatively 
independently of the others, and improved 
incrementally where deemed necessary. 
The overall system proved to be quite robust; the robot 
walked successfully even when major bugs were 
present in some of the modules. 

Several novel algorithms were also developed which 
addressed the specific problems associated with robot 
walking. The first was Symmetry Learning, which uses 
the robot’s own symmetry to speed up the creation of 

rules to walk without falling over. Several non-learning 
algorithms were also developed to provide rapid walking 
speed improvements by removing redundant and wasted 
time from a given robot walking sequence without 
compromising stability. 

The main limitation of the distributed learning 
architecture is that it is specific to the problem of learning 
how to walk. It may be possible to define a more general 
distributed learning architecture (perhaps using a 
different architectural topology) that is applicable to a 
wider set of problems in the same way that neural 
networks are. Further research can be directed towards 
development of additional levels of abstraction to broaden 
the scope of application of the architecture and 
algorithms. 
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